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Abstract—On-Device AI is an emerging paradigm that aims
to make devices more intelligent, autonomous and proactive
by equipping them with machine and deep learning routines
for robust decision making and optimal execution in devices’
operations. On-Device intelligence promises the possibility of
computing huge amounts of data close to its source, e.g., sensor
and multimedia data. By doing so, devices can complement their
counterpart cloud services with more sophisticated functionality
to provide better applications and services. However, increased
computational capabilities of smart devices, wearables and IoT
devices along with the emergence of services at the Edge of the
network are driving the trend of migrating and distributing
computation between devices. Indeed, devices can reduce the
burden of executing resource intensive tasks via collaborations
in the wild. While several work has shown the benefits of an
opportunistic collaboration of a device with others, not much is
known regarding how devices can be organized as a group as
they move together. In this paper, we contribute by analyzing
how dynamic group organization of devices can be utilized to
distribute intelligence on the moving Edge. The key insight is
that instead of On-Device solutions complementing with cloud,
dynamic groups can be formed to complement each other in an
On-Multi-Device manner. Thus, we highlight the challenges and
opportunities from extending the scope of On-Device AI from an
egocentric view to a collaborative, multi-device view.

Index Terms—Cloud, Edge, Cloudlet, Artificial Intelligence,
Device-to-Device, Data Analytics, Serverless

I. INTRODUCTION

On-Device AI (Artificial Intelligence) is an emerging
paradigm that aims to make devices more intelligent, au-
tonomous and proactive by equipping them with machine and
deep learning routines for robust decision making and opti-
mal execution in devices’ operations. On-Device intelligence
promises the possibility of computing huge amounts of data
close to its source, e.g., sensor and multimedia data. By doing
so, devices can complement their counterpart cloud services
with more sophisticated functionality to provide better appli-
cations and services1,2. Examples of this include, improved
app management to extend battery life, enhanced connectivity
and security, augmented natural interfaces for user interaction,
more accurate sensing measurements from physical sensors

1https://www.technologyreview.com/hub/ubiquitous-on-device-ai/
2https://www.androidauthority.com/what-is-ai-893954

Fig. 1: Multi-device communications to engage into collabo-
rative execution of tasks with heterogeneous devices. Issues
of connectivity overhead, and heterogeneity of devices.

and better personal assistant applications to support daily
activities of users3.

However, a fundamental limitation of On-Device solutions
is that its execution solely depends on the isolated and scarce
resources of a particular device, e.g., processing, storage,
communication. Despite the computational power of smart
devices being comparable to cloud servers [8], several work
has demonstrated that AI routines like deep learning require
heavy processing that drains the battery life of devices signif-
icantly [20]. Similarly, other work has also shown that while
it is possible to reduce the cost of running AI in devices at
some extent [19], devices still lack of enough resources to
execute multiple AI routines on demand concurrently. Thus,
it is very difficult to envision a proactive intelligence that
covers different aspects of devices in a continuous manner.
For instance, running at the same time, AI routines for object
sensing monitoring, robust bio-metric user identification and
extended remote control systems interactions.

On the other hand, the rapid proliferation of smart devices,
e.g., smartphones, smart Tvs; and IoT devices, e.g., Raspberry

3https://www.qualcomm.com/news/onq/2018/08/08/edge-how-device-ai-
enables-bright-biometrics-future



Pi4, Arduino5; along with the emergence of services at the
Edge of the network are driving the trend of migrating and
distributing computation closer to end devices [30], [32],
[35]. Indeed, devices can engage into opportunistic device-
to-device (D2D) collaborations to reduce the burden of per-
forming a common task by distributing its computation among
the available devices. While this approach works at some
extent, it relies on static and limited organization schemes
to engage into collaboration [9], e.g., master/slaves [14],
manager/workers [6]. As a result, when the number of nearby
devices increases and it is too heterogeneous, interconnecting
multiple devices to work together can become counterproduc-
tive rather than productive for resource optimization (Figure 1
illustrates the issue). Similarly, devices can also rely on Edge
and Fog infrastructures, e.g., cloudlets [29], to process data
instead of using remote cloud infrastructure. Since cloudlet
infrastructure is hard to maintain and deploy, it does not
provide a dense support like the ubiquitous one provided by
the cloud. Thus, cloudlet solutions are not well adopted yet
into existing architectures. As the matter of fact, cloudlets
are encountered by devices in the wild in the same way as
any other device, the only difference is that when a device
finds Edge support via cloudlet, it offloads the highest possible
processing to the cloudlet instead of splitting the task among
the available devices (including itself) [7], [11].

Certainly, D2D collaborations in multi-device environments
are critical to reduce energy footprint of applications and exe-
cute resource intensive tasks without cloud support. However,
most of D2D collaborations are opportunistic (temporal basis)
and its benefits depend highly on the right self-organization of
devices. While several work has shown the benefits of oppor-
tunistic encounters of a device with others [3], [18], not much
is known regarding how devices can be organized as a group as
they move together. In this paper, we contribute by analyzing
how dynamic group organization of devices can be utilized
to distribute intelligence in the wild. The key insight is that
instead of On-Device solutions complementing with cloud,
dynamic groups can be formed to complement each other
in an On-Multi-Device manner. Moreover, On-Multi-Device
intelligence can be also envisioned to assign intelligence to
groups, such that interaction between groups allow devices to
execute different types of AI routines concurrently. We believe
that by relying on collaborative multi-device approaches for
running AI, it is possible to create a distribute intelligence on
the Edge that is more scalable and less resource intensive for
devices.

II. BACKGROUND & RELATED WORK

Mobile, wearable and IoT devices rely on their constrained
resources to perform isolated computational operations in
the wild. To overcome these limitations and provide better
services, end devices connect to cloud to request functionality
in the form of services (see Figure 2a). While the cloud

4https://www.raspberrypi.org/
5https://www.arduino.cc/

provides the platform for ubiquitous access of services, cloud
infrastructure is typically located several or many network
hops away from devices. As a result, the cloud is encountering
issues for meeting the Quality-of-Service (QoS) and Quality-
of-Experience (QoE) requirements. For example, the response
time requirements of many systems and applications, e.g.,
health, transport, and autonomous cars, cannot be fulfilled by
services with unpredictable or significant latency. End devices
in turn are experiencing resource degradation in terms of e.g.,
battery and performance, for accessing remote cloud services.
To address these problems, infrastructure at the Edge of the
network is being investigated. As shown in Figure 2a, the
main idea is that cloud functionality can be migrated from
the cloud to the Edge, such that devices can access services
at low latency, which reduces operational costs of devices and
improves response time of applications.

On the other hand, increased computational capabilities of
smart devices along with improved frameworks for running AI
routines, it is opening a new plethora of On-Device solutions
with more intelligent applications and services that just com-
plement partly with the cloud/Edge in a serverless manner [12]
(see Figure 2b). This enable devices the possibility to become
more autonomous and proactive to users’ needs. However,
given the resource limitations of devices and the complexity
of deploying ubiquitous Edge infrastructure, it is difficult to
envision a large diversity of AI services for devices. Thus, in
this paper, we explore the foundational research challenges and
opportunities of using groups of multiple devices to distribute
a large scale variety of intelligent services on the move and
on the Edge. By doing this, a service can be host by different
groups that complement each other, such that the service can
exist completely on the Edge in an ubiquitous manner to
devices (see Figure 2c). We review existing work in these
lines as follows.

On-Device AI: Several work has study the feasibility of run-
ning deep learning on mobile, wearable and IoT devices [19],
[20], [23], [28]. Other work also has explored the possibility
of running AI routines using opportunistic collaboration of
devices [18]. Since end devices are resource constrained,
several work has proposed instead to run AI on Edge/Fog [30].
On-Device solutions have been proposed mostly in industry to
improve the provisioning of services and applications running
in mobile devices. The main idea is to run learning frame-
works, such as TensorFlow [1] in devices, and complement
functionality with cloud computing. In contrast to other work,
we explore the large-scale distribution of AI routines in the
wild and on the Edge by harnessing multi-device groups.

Proximal and collaborative infrastructures: Infrastructure
in the form of a cloudlet [33] has been envisioned for
supporting computation of devices on the Edge, e.g., cyber
foraging [2]. Since edge cloudlets are hard to deploy and
maintain densely, frameworks for remote offloading have been
explored [4], [7], [13], [17]. More recently however, to avoid
oscillating network latency, D2D offloading has been encour-
aged [9], [14]. Social-aware systems rely on opportunistic



Fig. 2: Device service schemes, a) Device dependent, service is located solely in the cloud; b) On-Device, service is distributed
in the cloud and the device, both complement each other; c) On-Multi-Device, service is located in the cloud and distributed
among devices, both are independent on their own, and just synchronize to keep consistency between them.

D2D communications to build a decentralized self-organizing
network based on opportunities of social proximity and inter-
activity [9]. Commonly these kind of systems are mostly inves-
tigated for recovery and disaster scenarios [24]. The main goal
of these systems is providing a dynamic network infrastructure
in which each device can perform network functions by them-
selves [27], e.g., packet forwarding, routing, and distributed
storage. Other examples of such systems include Mobile ad-
hoc networks (MANET) [25], wireless sensor networks [34],
Massive-multiplayer online games (MMOG) [15], Peer-to-peer
(P2P) systems [26], Delay-tolerant networks [22], and Decen-
tralized Online Social networks (DOSN) [5]. More recently,
however, these systems have been investigated for harnessing
the computational resources of devices in conjunction to create
a computational infrastructure on the edge that is in proximity
of users (HAGGLE [31], HyMobi [9], FemtoClouds [14],
Ubispark [18]). The main problem of these systems is fault
tolerance for proximal interactions, which just have been
explored partially for networking [3] and computation [9].
Unlike previous work, in this paper, we focus on identifying
how devices move together as groups, such that groups can
be used to distribute intelligence on the Edge. We explore the
challenges and opportunities of extending the scope of On-
Device from a single to a multi-device view.

III. FROM ON-DEVICE TO ON-MULTI-DEVICE:
CHALLENGES AND OPPORTUNITIES

Cloud computing is a fundamental platform for the pro-
visioning of ubiquitous services over the Internet. However,
over the years, end devices are becoming less dependent on
the cloud to perform complex computations. Indeed, as the
amount of data increases, processing data locally becomes
less costly for devices rather than moving it completely to
a remote location. Thus, devices are adopting approaches that

lead to less interactions with the cloud, e.g., Serverless AWS
Lambda6.

On the other hand, the cloud is migrating part of its func-
tionality to the Edge. However, since an Edge infrastructure
is far from being ubiquitous for devices due to its deploy-
ment complexity, its adoption within existing architectures
is arguable. Alternatively, collaboration between devices in
the wild has the potential to address most of the problems
about performing complex computations on the Edge. Several
studies have shown that smart devices are frequently co-
located in proximity to at least one other device throughout
the day, suggesting that devices can potentially collaborate to
reduce the effort of resource intensive tasks, e.g., sensing [21],
offloading [10], networking [16], storage, etc. However, dis-
tributing a task over a group of devices to be provided as
a service, it is a very complex matter. As devices have
different mobility patterns, it is necessary to identify devices
that share a tight mobility relation. In other words, group of
devices that host a service need to be formed by devices that
move together for long periods. In addition, once a group
of devices is identified, then devices need to be assessed
based on several factors, e.g., computational power, sensing
quality, communication technologies, etc., to determine the
amount of resources that will contribute with the hosting of
the service, and whether resources from different devices can
work together without degrading service provisioning. In this
section, we highlight these challenges and highlight potential
solutions.

A. Identifying duration in proximity patterns for multi-device
infrastructure formation

The formation of a multi-device infrastructure depend on
the proximity of devices to engage into collaborations (see

6https://aws.amazon.com/lambda/



Fig. 3: Identification of proximity patterns to form multi-
device infrastructures. We can observe that three different
groups can be identified. Each group can then host a particular
service that executes AI functionality. Groups interact between
them to consume and scale services.

Figure 3). As an example, personal devices are likely to
remain close to each other throughout most of the day,
whereas proximity of other devices depends on the social
relationship between the owners of the devices. Other devices
are encountered based on the daily routine mobility patterns
of users, e.g., static devices like IoT and cloudlets. Proximal
and temporal duration of devices is critical in a collaboration
as the processing of a task needs to be finished before
devices are out of reach of each other. Otherwise, applications
can become resource intensive as they can waste additional
energy to recover or simply applications become unusable due
to execution crashes. Since devices have different mobility
patterns, it is important to identify different levels of duration
in the interaction between devices. Deploying a service over
a multi-device infrastructure requires then devices to have a
tight mobility between them. Otherwise, a service is unable to
be executed due to missing devices.

B. Addressing devices in a multi-device interaction

One critical problem of collaborative D2D systems, it is
addressing devices in proximity. Usually, to engage into a D2D
collaboration, a device need to first detect devices in proxim-
ity, so that then it can proceed to establish communication
channels with every device available. While this approach is
reasonable to merge resources of different devices, in practice,
a device can address a limited amount of devices before the
collaboration process becomes too resource intensive. When
this occurs, a collaboration between devices become coun-
terproductive rather than productive. By identifying devices
moving in groups a priori, it is possible to mitigate the

problems of addressing devices, such that it is possible to
obtain a more stable yet distributed infrastructure.

C. Splitting a service over a multi-device infrastructure

Existing solutions for D2D collaboration rely on splitting
a task equally between devices for its execution (Figure 4a).
However, splitting a service over a multi-device infrastructure
requires different considerations. Indeed, once a group of
devices with tight mobility patterns is identified, then it is
possible to quantify the amount of resources to be contributed
by each device. Since devices can differ between each other
depending on the capabilities of their resources, it is possible
to encounter problems of resource fragmentation. This can
impede sharing of resources between devices. Resource frag-
mentation can occur if resources of devices are too different
between each other. For instance, the processing capabilities
of a smartwatch are lower when compared with a smartphone.
Thus, if both devices engage into collaborative processing,
then the smartwatch will become a bottleneck in the system.
As a result, each device needs to be assigned with a part of the
service that is in proportional with its capabilities as shown
in Figure 4b. However, assigning a part that is proportional to
the device capabilities, it is a difficult issue as it involves to
take into consideration many parameters of devices, specially
during runtime, e.g., memory available, CPU and transmission
rate, among others.

D. Opportunistic distribution of AI over multi-device groups

By identifying different groups of devices, it is possible to
assign each group to provision a particular AI functionality.
Interactions between groups then can be used to exchange AI
services between devices. By doing this, it is possible to create
scalable infrastructures in which a variety of AI is available
on the Edge. In addition, since a particular device can belong
to multiple groups, it is possible to assign a particular AI
functionality based on its group characteristics (see Figure 5).
For instance, a device can be the most powerful device within
one group, but the less resourceful in another one. Similarly,
a device that belongs to a group during night could have more
available resources, e.g., processing time, bandwidth, when
compared with a device that belongs to a group during the
day.

On the other hand, a service distributed in parts over
a multi-device infrastructure introduces several opportunities
to develop and design a more scalable and energy-efficient
system to distributed intelligence that is available on the
Edge. A multi-device infrastructure can be used to disseminate
reusable parts of a service to other groups that have similar
multi-device configurations. For instance, Figure 6 shows a
device migrating a part of a service from a cloudlet to another
cloudlet, which is in a different location, such that other
devices can complement each other with that functionality.

The utilization of reusable parts of a service that can be used
to complement others, it is a powerful approach to execute
resource intensive functionality on the Edge. By doing so,
devices avoid issues of assigning roles, e.g., master/slaves, and



(a) (b)

Fig. 4: Distribution of computation among multiple devices in the wild. (a) Division of a traditional computational task in a
multi-device environment, (b) Optimal distribution of a task as a service over a multi-device infrastructure, where a device
host part of the service based on its computational capacity.

Fig. 5: Assigning the provisioning of a particular AI service
to a multi-device group. From the multi-device infrastructure
above, three different services can be hosted in multiple
devices. A particular device can host more that one service
(part) when belonging to different groups at the same time.

calculating the optimal execution of a task as in traditional
collaborative systems, instead, devices are just concern on
executing their assigned part based on its group.

IV. CONCLUSIONS

In this paper, we contribute by exploring the challenges
and opportunities from extending the scope of On-Device
intelligence, from a single to a collaborative On-Multi-Device
perspective. While On-Device intelligence can be achieved in
a single device by complementing part of its functionality
with remote cloud infrastructure, devices can still experi-
ence degradation in performance due to oscillating changes
in communication with remote services. While devices can
rely on Edge and Fog infrastructure as well as co-located
collaborative devices to create a computational infrastruc-
ture closer to end devices, existing solutions can be more

Fig. 6: Opportunistic migration of a service part from one
group to another. By taking advantage of users mobility,
reusable functionality can be then disseminated by devices
themselves.

counterproductive rather than productive for devices as they
lack of proper mechanisms to scale in the wild and provide
ubiquitous support. In contrast to current work, we envision
that by identifying group of devices that move together, it is
possible to distribute intelligence in these group of devices,
such that devices complement each other instead of using
remote infrastructure. This opens a new plethora of large
scale distributed intelligence that is available on the Edge for
devices.
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