
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

MIHKEL VISNAPUU

Device-to-Device Mobile Gaming
Bachelor Thesis (6 EAP)

Supervisor: Huber Flores, MSc
Co-supervisor: Satish Narayana Srirama, PhD

TARTU, 2015

Abstract

Device-to-Device(D2D) mobile gaming is a new trend which is emerging as a

result of the increasing advances in mobile devices and social network interaction

with mobile peers. As these games are played between players in proximity, it is

possible to take advantage of computational offloading to balance the load of these

applications.

Smartphone games can be instrumentalized with computational offloading mech-

anisms in order to save energy and increase response time of the applications. In

this context, remote cloud and D2D offloading has been proposed.

It is well known that low latency is preferable to high latency in the communication

when offloading, and as a result, D2D offloading is more suitable than remote

cloud.

However, the idea of offloading to a nearby device is not feasible in practice, be-

cause a user may not be willing to process the task from another device. This can

be clearly seen as processing a task from another device does not represent a gain

but rather a loss in resources for the device that executes the task.

In this thesis, we investigate a new perspective, in which a device is not requested

to process a task, but it is alleviated from processing one task that another device

has already processed.

To achieve this purpose, we develop a framework and a case study. Based on the

result of the validation, we found out that it is possible to balance the execution

load of an application between nearby interconnected devices.

Keywords:

Android, Code offloading, Bluetooth

Contents

List of Figures v

1 Introduction 1

1.1 Introduction . 1

1.1.1 Motivation . 1

1.1.2 Contributions . 2

1.1.3 Outline . 2

2 State of the Art 3

2.1 Mobile Cloud Computing . 3

2.2 Code offloading . 3

2.3 Technologies and Implementations . 4

2.3.1 Java Reflection . 5

2.3.2 .NET framework . 6

2.4 Computational Offloading Frameworks . 6

2.4.1 Cloudlets . 6

2.4.2 Mobile Assistance Using Infrastructure 7

2.4.3 ThinkAir . 7

2.4.4 COMET . 7

2.4.5 Evidence-aware Mobile Code Offloading 8

2.5 Device-to-Device (D2D) Communication . 8

2.5.1 Context-Aware Hybrid Computational Offloading 8

2.5.2 Serendipity . 9

2.5.3 Hyrax . 9

2.6 Summary . 9

iii

CONTENTS

3 Problem Statement 11

3.1 Summary . 12

4 D2D Mobile Gaming 13

4.1 D2D framework . 13

4.2 Implementation . 13

4.3 Validation . 16

4.4 Summary . 21

5 Conclusions 23

6 Future Research Directions 25

7 Sisukokkuvõte 27

8 Licence 29

Bibliography 31

iv

List of Figures

2.1 General code offloading schema . 4

4.1 D2D code offloading schema . 14

4.2 Generalized architecture of D2D Framework 15

4.3 Sequence diagram of D2D framework . 15

4.4 Level 1 of the battle game . 17

4.5 Level 2 of the battle game . 18

4.6 Scoreboard of the game, once the player dies 19

4.7 Setup of the devices used for measuring the power consumption 20

4.8 Diagram showing the power consumption of two devices- without using the

framework and with using it . 20

v

LIST OF FIGURES

vi

1

Introduction

1.1 Introduction

1.1.1 Motivation

Global smartphone usage has drastically increased in recent years and it is estimated that by

2018 one third of consumers worldwide will be using them 1. This is due to the increase in

inexpensive smartphones coming to the market, which increases the need for applications to use

less resources to accommodate low-end devices. Also because smartphones have batteries that

are limited by size and thus capacity, it is extremely important to handle energy consumption

optimally. It is common to charge the battery daily. Code offloading is an approach that could

foster better energy saving for the smartphones resources (1).

The proliferation of smartphone applications is on the rise, in particular mobile games,

which already have PC-like features. D2D mobile games is a trend that is emerging as a result

of this sophistication. While code offloading can be utilized to delegate resource intensive

tasks, it can also be utilized to balance the execution load of using mobile applications when

they are connected in proximity.

Our hypothesis is that intermediate results can be shared between devices. For instance,

in the case of 3D mobile games, the 3D models(.obj, .x3d, .3ds, etc.) are large and require

heavy computational processing to build. Lets imagine a multiplayer mobile game that allows

the user to take a video of a room, process it and create a 3D model that will be used to create

a new level. When this game is played with other nearby devices, they too would need to get

the model in order to visualize it in-game. Instead of going through the process of making the

1http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694

1

1. INTRODUCTION

video and creating the 3D model, it is possible to share the already processed 3D model and so

decreasing the processing load for the device.

1.1.2 Contributions

A framework to support D2D offloading was developed. The framework follows a master/slave

model, in which the master device gives the slaves offloading tasks. Java reflection is used to

offload to other devices. Also a simple 2D battle game was developed to validate the frame-

work.

1.1.3 Outline

Chapter 2: discusses the state of the art for code offloading.

Chapter 3: provides the problem statement for the thesis. In particular, we look at the possi-

bility of code offloading for D2D mobile games.

Chapter 4: describes the contribution of the thesis. This section includes the discussion of the

developed framework as well as the game that serves as the use case.

Chapter 5: provides the conclusions for the thesis.

Chapter 6: describes the future research directions

Chapter 7: is the abstract in Estonian.

2

2

State of the Art

2.1 Mobile Cloud Computing

Mobile computing is a technology that allows the device to transmit data without having to

be connected to a fixed physical link 2. For example being able to read the news and stay

connected with friends and family while on the move is possible thanks to mobile computing.

Cloud computing is a technology that allows the user to consume services, which follows

an utility model (2, 3, 4, 5). It provides virtually infinite processing capabilities as servers to

the end users (2). These servers are accessed by the users using thin clients (6).

Because mobile devices are constrained by limited storage, processing capabilities, mem-

ory, battery etc., connecting them to the cloud enables augmenting these constraints (7, 8, 9,

10). The most prominent technique to empower the mobile devices with cloud power is code

offloading and we will discuss this in more detail in the upcoming sections.

2.2 Code offloading

Code offloading refers to a technique in which a computational task is transferred from one

place to another and then processed there (3, 7, 8, 11). As long as both execution environments

are the same, a computational task can be transferred between them. A general schema for

code offloading is shown in Figure 2.1.

The primary purpose of code offloading is to decrease the energy usage in the device as

this is one of the biggest constraints of mobile devices today. By diverting energy consuming

2http://www.doc.ic.ac.uk/ nd/surprise_96/journal/vol4/vk5/report.html

3

2. STATE OF THE ART

processes from client to server, this technique allows balancing and maintaining energy usage

in the client. It is a necessity for code offloading to take less or equal amount of time to

execute, otherwise it would make the application unresponsive and would drive the user away.

Offloading is beneficial when large amounts of computation is needed with relatively small

amount of data used for connection (4).

Figure 2.1: General code offloading schema

Figure 2.1 shows the traditional model for code offloading. The application(1), is installed

in both the device(2) and Dalvik Virtual Machine (VM)(5) located in the cloud server(4). When

the bar method is called, the offloading framework in the device sends the necessary data(3) to

the Dalvik VM, that then executes the method(6) and sends the result(7) back to the applica-

tion in the device. This means that the device got the result for the method, without actually

executing it itself.

2.3 Technologies and Implementations

There are different technologies and implementations that have been made for offloading. In

this section we will be looking at the most prominent of these.

4

2.3 Technologies and Implementations

2.3.1 Java Reflection

The Reflection API has been included in Java since version 1.1 3. It allows to examine or

modify the runtime behaviour of applications 4.

The Snippet 1 shows a simple example of Java reflection, where the method localFoo is

executed from the class Test by calling the method foo. In order to execute localFoo, the method

is first captured using getMethod function, which requires the method name and parameter

types as parameters. As localFoo does not require any parameters, null values are given to

getMethod and invoke calls. The invoke function then executes the method localFoo.

Snippet 1 Example of Java reflection implementation
public class Test {

public void localFoo() {

//do something

}

public void foo() {

Class<?> paramTypes = null;

Object[] paramValues = null;

Method method = Test.getClass().getMethod(

"localFoo",

paramTypes

);

method.invoke(Test, paramValues);

}

}

Java Remote Method Invocation (RMI) —RMI uses object serialization to assemble and dis-

assemble parameters and does not truncate types, supporting true object-oriented polymor-

phism 5. Java RMI system allows an object running in one Java VM to invoke methods on an

object running in another Java VM 6.

Java Remote Procedure Call (RPC) —RPC follows a client-server model 7 where the client

can call for the execution of the method in the server. Unlike RMI, the client does not have the

3http://docstore.mik.ua/orelly/java-ent/jnut/ch14_01.htm
4http://docs.oracle.com/javase/tutorial/reflect/index.html
5http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
6https://docs.oracle.com/javase/tutorial/rmi/
7http://www.cs.cf.ac.uk/Dave/C/node33.html

5

2. STATE OF THE ART

code to execute, but the reference to the code which resides in the server.

2.3.2 .NET framework

.NET Framework is a software framework developed by Microsoft 8. Among other objectives

it is designed to remotely execute code 9. It consists of the Common Language Runtime (CLR)

and the .NET Framework class library 10. The CLR is the execution engine that handles running

applications by providing memory management and other system services 11. CLR is used by

implementations such as MAUI (7).

2.4 Computational Offloading Frameworks

The idea behind computational offloading, which is also known as cyber foraging (12), is to

dynamically augment the computational and storage capabilities of mobile devices by taking

advantage of opportunistically discovered servers in the environment (13).

There have been many breakthroughs in code offloading over the years as it is a subject that

has been researched for over a decade. In this section we will be looking at the most prominent

of these solutions.

2.4.1 Cloudlets

Cloudlets are decentralized and widely-dispersed Internet infrastructures whose compute cy-

cles and storage resources can be leveraged by nearby mobile computers (6). The purpose

of them is to bring cloud closer to mobile devices, meaning that the connection could be es-

tablished by Wireless LAN instead of WAN. By doing this, the delays in connection can be

brought down.

The connection between mobile devices and cloudlets can be viewed as a client server

relationship. In this sense the mobile devices are thin-clients as the bulk of data processing

occurs on the server (cloudlet) 12.

Using cloudlets takes the burden away from the programmer to modify the application for

offloading purposes.

8https://msdn.microsoft.com/en-us/library/ff361664(v=vs.110).aspx
9https://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.100).aspx

10https://msdn.microsoft.com/en-us/library/w0x726c2(v=vs.110).aspx
11https://msdn.microsoft.com/en-us/library/hh425099(v=vs.110).aspx
12http://www.webopedia.com/term/t/thin_client.html

6

2.4 Computational Offloading Frameworks

2.4.2 Mobile Assistance Using Infrastructure

MAUI is a system based on .NET framework, that at runtime uses an analyser to decide what

code should be executed remotely, determined from performance and energy standpoints.

Annotations are used to let the application developer and analyser determine which meth-

ods and/or classes can be offloaded (7). The developer marks the ones that can be offloaded

and the framework determines whether it should be offloaded. Local execution is used as a

fallback in case the remote execution is not possible for various reasons.

The tests that were run indicate that MAUI has the capabilities to reduce processing and

energy usage in mobile devices (7).

2.4.3 ThinkAir

Similar to MAUI, ThinkAir (8) provides method-level computation offloading using annota-

tions. However it addresses MAUIs lack of scalability by creating VMs of a complete smart-

phone system on the cloud (8).

On first encounter, the analyser that is used to determine whether to offload or not, takes

into account current environmental parameters and starts collecting data for future usage. In

later stages, the collected data is used to determine where to execute the method. Java reflection

is used for offloading (8).

ThinkAir provides an efficient way to perform on-demand resource allocation and exploits

parallelism by dynamically creating, resuming, and destroying VMs in the cloud when needed.

Parallel execution is exploited by either using multiprocessor support or splitting the work

among multiple VMs. By doing this it was possible to reduce the execution times and energy

consumption of applications, compared to non-parallel executions (8).

2.4.4 COMET

Code Offloaded by Migrating Execution Transparently (COMET) (9) is a system that focuses

on improving the speed of computation. In order to achieve this, they introduced Distributed

Shared Memory (DSM) to offloading. By doing this they have succeeded in developing an

offloading engine that fully supports multi-threaded computations. As such COMET is more

focused on not what to offload but how to offload (9).

7

2. STATE OF THE ART

By offloading computationally heavy tasks over WiFi, the system has on average managed

to decrease battery consumption of the applications. It is also noted that due to 3G characteris-

tics, offloading via 3G usually ends up consuming more energy as opposed to executing locally.

This is however taken care of by the decision engine, when latency is high and bandwidth is

limited, the tasks are run locally.

2.4.5 Evidence-aware Mobile Code Offloading

EMCO (14) follows the traditional offloading model. However it also adds data analysing and

a cache. By gathering data from users and analysing it with Evidence analyser, it is possible to

determine what, when and where to offload more optimally (5, 14).

Cache allows reusing the result for a given code that is often called, thus lowering the exe-

cution time. It can also store results in client side, if it is determined to be reused again or later

in the applications execution. Initially the advantages of this approach would be comparable

to other proposals, however as it takes advantage of crowdsourcing, it should show it’s true

potential over time (14).

2.5 Device-to-Device (D2D) Communication

As demonstrated by previous works offloading to remote cloud is feasible. However the latency

issues in communication is still a major drawback. Another proposed solution is to offload to

nearby devices, which are in a low-latency networks. Latency is the time taken to send data be-

tween two points in a network, a low-latency network is where this time taken is minimized 13.

Mainly two connection protocols are used in D2D mobile clouds - WiFi and Bluetooth. The

main downside of Bluetooth is its limited range (~10 m), compared to WiFis range of around

100 meters (15). However the upside of Bluetooth is that the power consumption is low (16).

It is also important for the participating devices to have incentive to share their resources

with other devices and there needs to be a mechanism to prevent ’free riding’ (15).

2.5.1 Context-Aware Hybrid Computational Offloading

The main idea behind dynamic D2D infrastructure is to create a dynamic infrastructure of mul-

tiple mobile devices in proximity to share the load of processing heavy computational tasks (1).

13http://www.cl.cam.ac.uk/teaching/0708/AddTopics/Low-Latency-Networking.ppt

8

2.6 Summary

The D2D infrastructure is created by transforming nearby devices into servers, which can pro-

cess offloading tasks from other devices.

The system combines features from cloudlets and code offloading models, by offloading to

cloud and relying on D2D communication to foster computational offloading in proximity. It

is adaptive to the applications context, as the system can decide whether to offload to cloud or

to a D2D infrastructure nearby. (1)

2.5.2 Serendipity

Serendipity (11) is a system, that enables mobile devices to remotely access computational

resources of other mobile devices (11). Benchmarks are ran by profilers to gather data about

the devices capabilities. When two devices encounter, they first exchange metadata, which also

includes the data from profilers (11). This data is used to determine if it is feasible to offload

from execution time and energy consumption standpoints.

However as mobile devices have limited energy, the user might not want to share the energy

they have. Serendipity proposes that the reasonable solution would be for each device to last as

long as possible while still timely finishing their tasks (11). To battle this they use an algorithm

proposed in (17).

2.5.3 Hyrax

Hyrax uses a cluster of mobile devices as resource providers and have succeeded in showing

the feasibility in such a mobile cloud (15). A modified Hadoop 14 is transplanted into Android

so that these devices can act as PCs to deploy a real cloud computing system (18). WiFi is used

to establish connection with nearby devices (19).

2.6 Summary

In this section we explained what is computational offloading, how it can be implemented and

briefly looked at the current solutions provided. From the works done, it can be seen that

offloading succeeds in being able to improve performance and decrease power consumption.

However it is also stated that the tests are mainly done in controlled environments and because

of this in most cases computational offloading is actually counterproductive in real-world sce-

narios (1).
14https://hadoop.apache.org/

9

2. STATE OF THE ART

10

3

Problem Statement

In the previous section, we explored current solutions for computational offloading. Most

of the frameworks discussed take advantage of remote cloud, which has its advantages and

disadvantages. One of the biggest disadvantage is that the connection established with cloud

servers can suffer from high-latency. In this section we raise the question, how is it possible to

acquire computational resources without having to deal with high-latency.

It has been demonstrated in previous section that computational offloading can decrease

energy consumption and increase performance if the offloaded task requires a lot of compu-

tational processing (4, 7, 8, 9, 14). The offloading can happen either to a remote server or a

device in proximity (mobile devices, cloudlets etc.). As connecting to the cloud involves higher

latency than connecting to nearby devices, it should be more feasible to use these resources in-

stead.

Current mobile games are already with PC-like features and with the emerging of D2D

mobile games, there is a need to balance the computational load for the devices. When dealing

with mobile devices in proximity, everyone has limited battery life. As different offloading

tasks are given to a device, instead of gaining energy they spend it. This raises the question,

whether users are willing to share their already limited processing capabilities with other de-

vices as it increases energy consumption.

As a result, D2D offloading has been proposed. Instead of processing a task for another

device, computational offloading can also be used to share the intermediate results of a pro-

cessed task. By doing this, the device is alleviated from processing a task that another device

has already processed. To validate our ideas, we built a D2D framework and a simple 2D game.

11

3. PROBLEM STATEMENT

3.1 Summary

In order to counter the problems of high-latency when trying to acquire computational re-

sources we propose to use nearby devices. The devices can establish connection between

themselves using Bluetooth. By taking into account the next generation D2D mobile games,

it may be highly beneficial to be able to share data with nearby devices. This could lead to

smoother gameplay, lower loading times, better battery consumption and better overall user

satisfaction.

12

4

D2D Mobile Gaming

In the previous section, we talked about the possibility of sharing the computational load be-

tween multiple devices in proximity. When dealing with games, more specifically multiplayer

games, it is possible to reduce load times and power consumption by sharing the computational

tasks between nearby devices. For example when two devices are playing a multiplayer game,

it is unnecessary for both of them to load each image, sprite, model etc. locally. Instead they

can divide these tasks between them and share the results with each other.

4.1 D2D framework

In order for devices to offload computational heavy tasks between nearby devices, we created

a D2D framework. The general schema for D2D code offloading can be seen on Figure 4.1.

When comparing it to the general schema in Figure 2.1 on page 4, it can be seen that instead

of a cloud server, a collection of nearby devices are used for offloading purposes.

Figure 4.1 shows the model for code offloading in D2D framework. The application(1),

is installed in both the device(2) and nearby devices(4). When the bar method is called, the

offloading framework decides which nearby device to use as a slave and sends the necessary

data(3) to it. The slave then executes the method(5) using Java reflection and sends the result(6)

back to the application in the master device.

4.2 Implementation

The framework is implemented for Android devices. Java reflection is used to offload to other

devices. Bluetooth is used to establish a connection between devices in proximity. This is

13

4. D2D MOBILE GAMING

Figure 4.1: D2D code offloading schema

done by creating an insecure radio frequency communication(RFCOMM) BluetoothSocket be-

tween the devices. Once the runtime execution details of the code are captured, they can be

sent back and forth in the communication using ObjectInputStream and ObjectOutputStream,

respectively. Capturing the runtime details of the code allows the devices to reconstruct the

code in environments that share the same execution properties.

Figure 4.2 shows the generalized architecture of D2D framework. Each of these devices

has an application(.apk file) and the framework installed. The Connection Manager establishes

a connection between the devices. The System profiler is in charge of collecting data about the

device, application and network. The Code profiler determines what code to offload based on

annotations added by the developer of the application. Both devices(1 and 2) have a role, which

can be either master or slave. The role is assigned by the frameworks Orchestrator. Once the

slave is chosen, the master sends a request to get the intermediate results from the slave. The

slave handles the request and sends the result back to the master. This sequence can be seen in

Figure 4.3.

If there are multiple slaves to select from, greedy algorithm is used to make the decision.

This algorithm selects the best choice available at the current time without taking into account

14

4.2 Implementation

Figure 4.2: Generalized architecture of D2D Framework

Figure 4.3: Sequence diagram of D2D framework

possible future consequences 15.

The method shown on Snippet 2 returns the connected devices descendingly ordered by

CPU idleness and that are currently not busy. The deviceList contains all the devices MAC

15http://www.encyclopediaofmath.org/index.php/Greedy_algorithm

15

4. D2D MOBILE GAMING

Snippet 2 Greedy algorithm in D2D framework
public List<String> greedyDecision(ConnectedDeviceList deviceList) {

List <String> devices = new ArrayList<String>();

statustable.sortDescStatus("cpuIdleness");

for (int i=0; i<deviceList.size(); i++) {

if (deviceList.getJobStatusList().get(i) == true) {

devices.add(deviceList.getDeviceList().get(i));

}

}

return devices;

}

addresses and the statustable has the data collected for each device that is currently connected

to the master device. The device is busy if it is in process of offloading data. First devices’

MAC address returned from this method will be assigned to be in the slave role.

The framework also includes a custom logger, that uses the devices database to store infor-

mation about the offloading process. By being able to download the contents of the database

table into the device, it is possible to analyse the data to improve the framework.

4.3 Validation

To validate the framework, we built a battle game. The game was implemented using the

Android 2D OpenGL Game Engine called AndEngine 16. GLES2 version of the AndEngine

was used for the game, which is based on OpenGL ES 2.0 17. PhysicsBox2DExtension 18 was

used to create the physics of the world.

The game consists of two levels populated with enemies, that need to be destroyed. Level

1 of the game can be seen in Figure 4.4 and level 2 from Figure 4.5. The user has control over

the character(wizard) in the middle of the screen. The knight and the ghost serve the purpose

of enemies. The available controls are as follows: moving to the sides, jumping and shooting

projectiles. Projectiles are shot by triggering a touch event in the desired direction.

16https://github.com/nicolasgramlich/AndEngine
17http://www.andengine.org/blog/2012/06/andengine-gles2-old-and-new-news/
18https://github.com/nicolasgramlich/AndEnginePhysicsBox2DExtension

16

4.3 Validation

Figure 4.4: Level 1 of the battle game

A total of 22 images were used for the sprites in the game. These images include the tiles,

animated characters, backgrounds and controls for the game. The art used in the game comes

from PlatForge 19. It is estimated that 46 sprites and 35 bodies of these sprites are created

during one gameplay. For example in Figure 4.4 there are a total of 16 sprites visible and

Figure 4.5 displays 15 sprites. If the player dies, the scoreboard is shown, which can be seen in

Figure 4.6. This screen consists of two sprites, the background image and a back button. These

do not include the projectiles, as these are created when an attack is initiated and destroyed

after contact or reaching the end destination.

Bodies are used in order to add physics attributes like weight, elasticity, fixture, movement

etc. to sprites. They are divided into three types: static, kinematic and dynamic. As the

name says, static bodies are static, they will not move(e.g. tiles, buttons etc.). Kinematic and

dynamic bodies are used when movement is necessary. Kinematic bodies do not interact with

the forces(e.g. gravity) of the physics world, instead they can be given a velocity at which they

move in a certain direction. In contrast dynamic bodies can be fully simulated and they interact

with other body types. The movement of dynamic bodies is created by adding a force to them

19https://play.google.com/store/apps/details?id=edu.elon.honors.price.maker

17

4. D2D MOBILE GAMING

in a specific direction. For instance the wizard is a dynamic body type, the player has control

over the forces that manipulate the body by using movement commands.

Figure 4.5: Level 2 of the battle game

It was decided that the offloading shall be tested on loading the sprites of the game as this

could in theory greatly decrease the loading times. The method to be offloaded was hard-coded

into the application. This means that every time the game is run, the framework will try to

offload the loading of sprites to other nearby devices at runtime. Figure 3 shows one part of the

code that is offloaded. This code is responsible for creating the ITextureRegion for the mountain

that is accessed by the game, once the loading of level 1 is initiated.

Snippet 3 Code that loads the mountain image used for background in level 1 of the game
ITextureRegion mountain =

BitmapTextureAtlasTextureRegionFactory.createFromAsset(

backgroundTextureAtlas,

activity,

"mountain.png"

);

18

4.3 Validation

Figure 4.6: Scoreboard of the game, once the player dies

The source code for the game can be obtained from GitHub 20 The game requires the device

to have touch screen capabilities 21 and atleast Android Ice Cream Sandwich (4.0) platform.

However the required minimal platform for the device is Android Jelly Bean (4.1) as this is the

requirement of the framework itself.

For the validation we used a Samsung Galaxy S3 I9300 equipped with Android Jelly Bean

(4.1.2) and a Sony Xperia Z1 that has Android KitKat (4.4.4). The setup can be seen in Fig-

ure 4.7 and the results can be seen in Figure 4.8. PowerTutor (20) was used for the measurement

of energy. The first column shows the energy usage when not using D2D framework and the

second column shows when it was used.

When playing the game normally, the master device used 3252 J and the slave 4321 J of

energy. However when they shared results, the master device spent only 457 J and the slave

used 4786 J of energy. It can be seen that by using the framework, the slave device had to

spend a little more energy than usual, but the master device was able to save almost six times

the energy used when compared to normal usage. Combined the devices ended up saving

energy.

20https://github.com/huberflores/CaseStudy-QoS-CodeOffloading
21https://source.android.com/devices/input/touch-devices.html

19

4. D2D MOBILE GAMING

Figure 4.7: Setup of the devices used for measuring the power consumption

Figure 4.8: Diagram showing the power consumption of two devices- without using the framework
and with using it

20

4.4 Summary

4.4 Summary

Developing the game and making a use case out of it, made it possible to demonstrate the

abilities of the framework. The master device succeeded in getting the results for a task, that

had already been done by the slave and ended up saving energy. Although the slave ends up

wasting more energy then it would normally, the two devices combined used less energy in

total.

21

4. D2D MOBILE GAMING

22

5

Conclusions

Smartphones keep evolving as consumers demand for better performance and battery life. For

example, performance can be boosted by equipping the device with a more powerful processor

and more RAM. But this in consequence usually increases the battery usage. It has been

suggested to use computational offloading to augment the devices capabilities as it has been

shown that by using computational offloading techniques, it is possible to increase both the

performance and battery life of smartphones.

There are different solutions proposed for code offloading which include using cloudlets,

VMs located in the cloud etc. However it is also possible to harvest the resources of nearby

devices as discussed earlier. This can be highly advantageous when dealing with D2D mobile

games.

By giving tasks to other nearby smartphones to solve means that the offloading process

comes at the expense of other devices’ battery life. If only one device does the offloading for

others then it results in being disadvantageous for it and highly rewarding for others. It is the

job of the framework to determine how to offload, so that all devices can benefit from it.

However, it is also possible to share the intermediate results of tasks with other nearby

devices. This enables to alleviate the device of processing said task. We developed a prototype

and results give positive insights about the applicability of the technique.

23

5. CONCLUSIONS

24

6

Future Research Directions

As the main target of D2D mobile games are nearby devices, computational offloading tech-

niques should be used to balance the processing of computationally heavy tasks. However there

are still some drawbacks to computational offloading.

For instance, current frameworks designed for offloading include poor profilers. ThinkAir

suggests gathering data about the offloading processes to improve this. However with crowd-

sourcing as proposed by EMCO it is possible to take it a step further. By gathering data about

different offloading processes and environments to a central cloud database, it enables profilers

to more accurately determine the best solution for offloading.

Because of constant changes to applications, network infrastructures and devices, we be-

lieve that by creating a hybrid framework designed to offload would be most suitable. By

allowing different types of connections to be established(3G, 4G, WiFi, Bluetooth etc.) and

targets(cloud, cloudlet, mobile devices etc.) to choose for offloading, it is possible to accom-

modate different needs for both the user and the application. Cloud servers might grant access

to more computational power as opposed to nearby devices, but this comes at a cost of using

connections other than Bluetooth, therefore requires more energy and may suffer from high-

latency.

On the other hand in 2014, Google announced a new Android runtime(ART). The main

purpose of this is to replace Dalvik, the VM on which Android Java code is executed on 22. ART

is designed to be compatible with Dalvik Executable format and Dex bytecode specification,

however some techniques that work on Dalvik do not work on ART 23.

22http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
23https://source.android.com/devices/tech/dalvik/

25

6. FUTURE RESEARCH DIRECTIONS

The biggest change coming with ART is that it implements Ahead-of-Time(AOT) compi-

lation instead of Just-in-Time(JIT) as it was with Dalvik 22. This means that the application is

compiled once during the first execution and every subsequent executions will not compile it

again, instead reuse the already compiled native code. Optimizing and compiling the entirety

of code only once results in decreasing overall power consumption. Because of this, the first-

run of an application takes considerably more time than in the case of Dalvik. However the

tests indicate a performance boost of roughly two times compared to Dalvik 22.

In theory, this does not however have a negative effect to the D2D framework, as the already

compiled code is still reusable by another device by sharing the necessary results before the

first run of the application on another device.

26

7

Sisukokkuvõte

Tänu läbimurretele mobiilsete seadmete ja sotsiaalvõrgustikes vastastikuse mobiilse suhtlemise

valdkondades on seadmelt-seadmele (ingl. k. device-to-device) mobiilsed mängud muutunud

aktuaalseks trendiks. Selleks, et säästa rakenduste poolt nõutavat energiat ja kiirendada nende

reaktsiooniaega, on võimalikuks vahendiks kasutada koodi mahalaadimist pilve vahendusel või

seadmelt-seadmele. Teatavasti on andmevahetuses eelistatud madal latentsusaeg, mille tõttu on

seadmelt-seadmele mahalaadimine sobilikum. Sellegipoolest ei ole lähedal asuvale seadmele

mahalaadimine praktikas otstarbekas, sest kasutaja ei pruugi olla nõus teise seadme poolt edas-

tatud ülesande lahendamises, kuna sellega kaasneb lisanduv energia kadu. Antud töös lähen-

eme probleemile uuest küljest: selle asemel, et lasta teisel seadmel töö ära teha on võimalik ka-

sutada juba lahendatud ülesannete tulemusi. Püstitatud eesmärgi saavutamiseks arendati välja

raamistik ja teostati juhtumiuuring. Valideerimise tulemusele põhinedes leidsime, et lähedal

asuvate, omavahel ühendatud seadmete puhul on võimalik vähendada rakenduse koormust.

Võtmesõnad:

Android, Koodi mahalaadimine, Bluetooth

27

7. SISUKOKKUVÕTE

28

8

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Mihkel Visnapuu (date of birth: 14/08/1992), herewith grant the University of Tartu a

free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, in-

cluding for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the copyright,

Device-to-Device Mobile Gaming

supervised by Huber Flores and Satish Narayana Srirama,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2015

29

8. LICENCE

30

Bibliography

[1] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, R. Buyya, Mobile code offloading: from concept
to practice and beyond, Communications Magazine, IEEE 53 (3) (2015) 80–88. 1, 8, 9

[2] H. Flores, S. N. Srirama, C. Paniagua, A generic middleware framework for handling process
intensive hybrid cloud services from mobiles, in: Proceedings of the 9th International Conference
on Advances in Mobile Computing and Multimedia, ACM, 2011, pp. 87–94. 3

[3] H. Flores, S. N. Srirama, Mobile cloud middleware, Journal of Systems and Software 92 (2014)
82–94. 3

[4] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: Can offloading computation save energy?,
Computer (4) (2010) 51–56. 3, 4, 11

[5] H. Flores, S. Srirama, Mobile code offloading: should it be a local decision or global inference?,
in: Proceeding of the 11th annual international conference on Mobile systems, applications, and
services (MobiSys 2013), ACM, pp. 539–540. 3, 8

[6] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in mobile
computing, Pervasive Computing, IEEE 8 (4) (2009) 14–23. 3, 6

[7] P. Bahl, R. Y. Han, L. E. Li, M. Satyanarayanan, Advancing the state of mobile cloud computing,
in: Proceedings of the third ACM workshop on Mobile cloud computing and services, ACM, 2012,
pp. 21–28. 3, 6, 7, 11

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: Dynamic resource allocation and
parallel execution in the cloud for mobile code offloading, in: INFOCOM, 2012 Proceedings
IEEE, IEEE, 2012, pp. 945–953. 3, 7, 11

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, X. Chen, Comet: Code offload by migrating
execution transparently, in: Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation, USENIX, 2012, pp. 93–106. 3, 7, 11

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between mobile
device and cloud, in: Proceedings of the sixth conference on Computer systems, ACM, 2011, pp.
301–314. 3

31

BIBLIOGRAPHY

[11] C. Shi, V. Lakafosis, M. H. Ammar, E. W. Zegura, Serendipity: enabling remote computing among
intermittently connected mobile devices, in: Proceedings of the thirteenth ACM international sym-
posium on Mobile Ad Hoc Networking and Computing, ACM, 2012, pp. 145–154. 3, 9

[12] M. Satyanarayanan, Pervasive computing: Vision and challenges, Personal Communications,
IEEE 8 (4) (2001) 10–17. 6

[13] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I. Yang, The case for cyber foraging,
in: Proceedings of the 10th workshop on ACM SIGOPS European workshop, ACM, 2002, pp. 87–
92. 6

[14] H. Flores, S. Srirama, Adaptive code offloading for mobile cloud applications: Exploiting fuzzy
sets and evidence-based learning, in: Proceeding of the fourth ACM workshop on Mobile cloud
computing and services, ACM, 2013, pp. 9–16. 8, 11

[15] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud computing: A survey, Future Generation
Computer Systems 29 (1) (2013) 84–106. 8, 9

[16] D. Jian-jun, X. Heng-cheng, A distributed online test system based on bluetooth technology, in:
Software Engineering (WCSE), 2010 Second World Congress on, Vol. 1, IEEE, 2010, pp. 15–17.
8

[17] J.-H. Chang, L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, in: INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, Vol. 1, IEEE, 2000, pp. 22–31. 9

[18] H. Qi, A. Gani, Research on mobile cloud computing: Review, trend and perspectives, in: Dig-
ital Information and Communication Technology and it’s Applications (DICTAP), 2012 Second
International Conference on, ieee, 2012, pp. 195–202. 9

[19] E. E. Marinelli, Hyrax: cloud computing on mobile devices using mapreduce, Tech. rep., DTIC
Document (2009). 9

[20] Z. Yang, Powertutor-a power monitor for android-based mobile platforms, EECS, University of
Michigan, retrieved September 2. 19

32

	List of Figures
	1 Introduction
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Contributions
	1.1.3 Outline

	2 State of the Art
	2.1 Mobile Cloud Computing
	2.2 Code offloading
	2.3 Technologies and Implementations
	2.3.1 Java Reflection
	2.3.2 .NET framework

	2.4 Computational Offloading Frameworks
	2.4.1 Cloudlets
	2.4.2 Mobile Assistance Using Infrastructure
	2.4.3 ThinkAir
	2.4.4 COMET
	2.4.5 Evidence-aware Mobile Code Offloading

	2.5 Device-to-Device (D2D) Communication
	2.5.1 Context-Aware Hybrid Computational Offloading
	2.5.2 Serendipity
	2.5.3 Hyrax

	2.6 Summary

	3 Problem Statement
	3.1 Summary

	4 D2D Mobile Gaming
	4.1 D2D framework
	4.2 Implementation
	4.3 Validation
	4.4 Summary

	5 Conclusions
	6 Future Research Directions
	7 Sisukokkuvõte
	8 Licence
	Bibliography

