

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSIT UNIVERSITY OF HELSINKI

PENGUIN: Aquatic Plastic Pollution Sensing Using Autonomous Underwater Vehicles (AUV)s

<u>Huber Flores</u>, Agustin Zuniga, Naser Hossein Motlagh, Mohan Liyanage, Monica Passananti, Sasu Tarkoma, Moustafa Youssef and Petteri Nurmi

MobiSys 2020

The 18th ACM International Conference on Mobile Systems, Applications, and Services

DroNet June 19, 2020, Toronto, Canada

Importance

 Aquatic plastic pollution is a global concern, affecting everything from marine ecosystems to climate change and even human health.

Floating

Source: <u>https://www.naturepl.com/stock-photo-divers-swimming-past-a-plastic-bag-floating-underwater-resembling-a-nature-image01619091.html</u>

Underwater

Source: https://www.pikrepo.com/frqdg/plastic-bottle-floating-on-water

Mixing with the ecosystem

Source: https://www.pinterest.com/pin/484840716132563124/

Preventing the pollution caused by plastics is extremely important

Finding plastics underwater is non-trivial

 Visual inspections (humans) and object recognition fail to identify plastics

Plastic bottle blended with coral

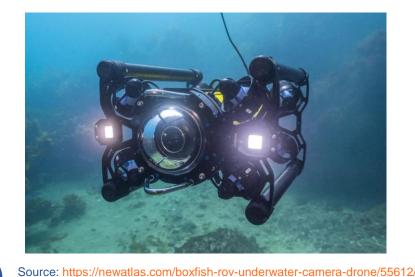
Source: https://www.independent.co.uk/environment/plastic-pollution-coralreefs-disease-damage-seas-oceans-cornell-university-a8178156.html

Coral wrapped in a plastic bag

Source: <u>https://www.independent.co.uk/environment/plastic-pollution-coral-</u> reefs-disease-damage-seas-oceans-cornell-university-a8178156.html

Degraded plastic bottle in sea floor

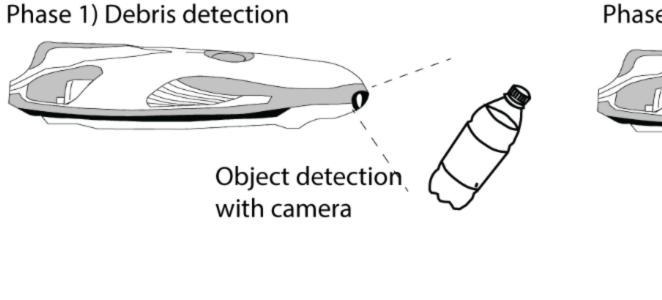
Source: https://twitter.com/4ocean/status/993913424332673025/photo/1

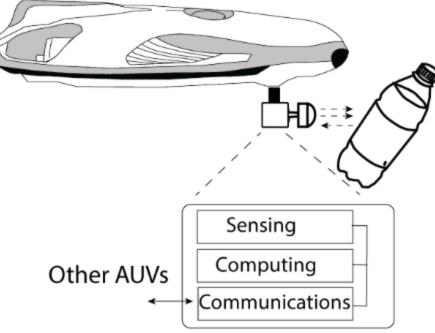

How to identify and classify plastics underwater accurately?

PENGUIN: Contributions

- **New system:** We present PENGUIN, a novel AUV system and architecture for plastic pollution monitoring underwater
- New method: PENGUIN integrates a low-cost and low-power sensing solution that uses off-the-shelf green light sensors
- New insights: We demonstrate that PENGUIN can identify and classify plastics underwater

State-of-the-art solutions


- On the water surface
 - (aerial UAVs, boats, buoys, satellite images)
- Underwater
 - Visual inspection by experts (diver expeditions)
 - Cameras and object recognition (ROVs)
 - Infrared spectroscopy (very costly, not scalable)


Current solutions can identify plastics (at some extent) but it is not possible to classify them

PENGUIN: Overview

Phase 2) Optical sensing analysis

PENGUIN: Evaluation and Results

PENGUIN: Testbed

Plastic bottles

Plastic cards

Shampoo bottles

Six pack rings

FuuBuu

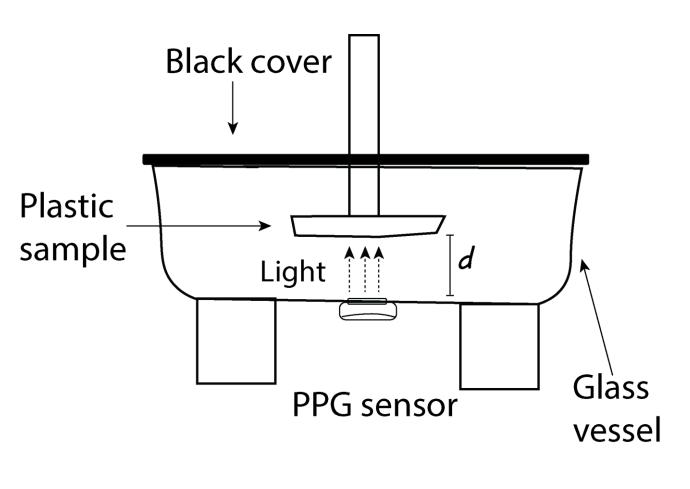
Diapers

Respiratory F masks

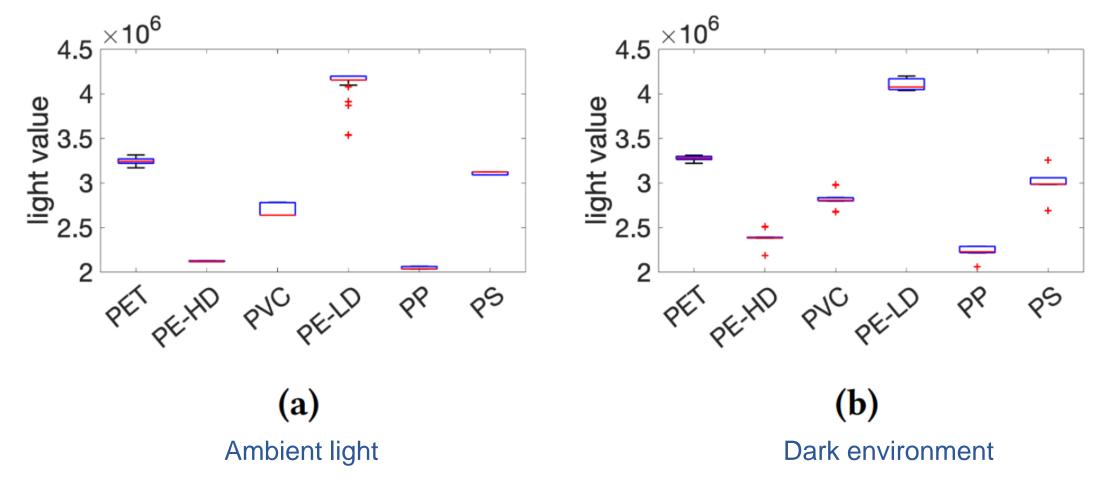
atory Food packing

Car panel

```
Plastic trays
```


PENGUIN: Testbed

Controlled plastic samples


Light sensor through glass

Testbed for plastic recognition underwater

PENGUIN: Evaluation

Result: Green light reflectivity can characterize plastics in different environmental conditions

10

PENGUIN: Evaluation

Result: High accuracy to classify different types of plastics underwater

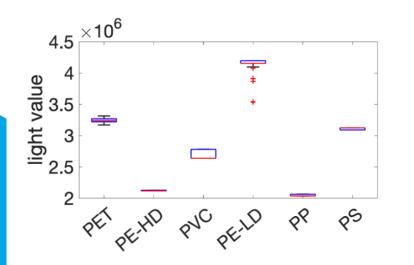
Test	k-NN	Random forest	Average
Cross Validation			
All conditions 6-folds	0.95	0.95	0.95
Ambient 6-folds	0.96	0.95	0.96
Darkness 6-folds	0.94	0.96	0.95
Model data \rightarrow Predicted			
Ambient \rightarrow All conditions	0.80	0.80	0.80
Ambient \rightarrow Darkness	0.69	0.68	0.69
Darkness \rightarrow All conditions	0.95	0.95	0.95
$Darkness \rightarrow Ambient$	0.94	0.92	0.93
Average	89.0	88.7	88.9

Plastic classification accuracy in different experimental conditions. Model data -> Predicted

PENGUIN: In the wild

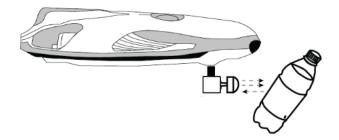
Result: AUV navigation is not disrupted. Human operators are required.

PENGUIN front view


PENGUIN: Ongoing work

- Other cases
 - Water turbidity
 - Water flow (stability with other sensors, e.g., accelerometer)
- Other uses for green light and other light spectrum, e.g., red
 - Supporting simultaneous communication and sensing is possible
- Cooperation between UAVs
 - Augmenting processing resources even further underwater, e.g., like a Naptick datacenter

Summary and conclusions


- **New system:** We present PENGUIN, a novel AUV system and architecture for underwater plastics pollution monitoring
- New method: PENGUIN integrates a low-cost and low-power sensing solution that uses off-the-shelf green light sensors
- **New insights:** We demonstrate that PENGUIN can identify and classify plastics underwater

Thank you! (Do not hesitate to reach us via e-mail)

Huber Flores (huber.flores@ut.ee) Agustin Zuniga (agustin.zuniga@helsinki.fi) Naser Hossein Motlagh (naser.motlagh@helsinki.fi) Mohan Liyanage (mohan.liyanage@ut.ee) Monica Passananti (monica.passananti@unito.it) Sasu Tarkoma (sasu.tarkoma@helsinki.fi) Moustafa Youssef (<u>moustafa@alexu.edu.eg</u>) Petteri Nurmi (petteri.nurmi@helsinki.fi)