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Importance

• In many everyday situations, there are many devices in each 
others’ communication range
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Source: https://www.railwaypro.com/wp/mernda-rail-extension-opens/ Source: https://www.railwaypro.com/wp/mernda-rail-extension-opens/

Train station Street Home

Source: https://www.pinterest.com/pin/484840716132563124/

Massive potential to harness collaboration among devices (e.g., 

sensing or computing)



• Criteria for collaborator selection sensitive to type of task
 Collaborative Computing -> need long yet predictable collaboration duration, otherwise task may fail 

 Collaborative Sensing -> the longer the duration, the higher the benefits

• Randomly selecting collaborators results in unpredictable collaboration times

• Selecting familiar sensitive to human mobility characteristics 

1. How to maximize duration of collaborations? 

2. How to make variance in time small?

Finding collaborators is non-trivial
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COSINE: Contributions
• New method: We present COSINE, method for selecting optimal 

collaborators with longer and more consistent duration.

• New insights: We demonstrate existing methods are suboptimal and 
sensitive to characteristics of human mobility.

• Improved performance: We demonstrate significant improvements in 
energy and performance compared to state-of-the-art solutions.

• New applications: Our approach enables new types of collaborative 
applications, e.g., edge intelligence, micro data centres, and federated 
learning.
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State-of-the-art solutions
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UbiSpark (IEEE 

Pervasive, 2019)
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2019)
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• Quantifies regularity of encounters between devices, 

• Selects collaborators based on duration and regularity
 Regularity = (Markov trajectory) entropy values

COSINE: Overview
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COSINE: Quantization of measurements

Phase 1
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• Aggregate samples into a 

signal 
 Data-intensive analysis

• Quantize the signal
 Reduce details while 

preserving relative patterns

 Prepare for regularity 

extraction



COSINE: Extraction of regularity

Phase 2
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• Build a Markov trajectory 

entropy matrix
 Quantized signal is  taken as 

input

• Estimate the predictability of 

consistent encounters
 The higher the entropy, the more 

consistent (longer duration) and 

vice versa



COSINE: Selection of collaborators

Phase 3
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• Derive entropy ranges with 

upper and lower bounds that 

depict grouping of entropy 

values

• Entropy ranges are ranked 

based on cardinality
 Candidates are selected 

according to the frequency of 

their entropy range



COSINE: Evaluation and Results
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Baselines

• Familiarity

• Permanency

• Magnitude
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COSINE: Evaluation

Result: Enough regularity to model different types of encounters
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COSINE: Evaluation

Result: Regularity can be used to characterize different types of  
encounters in a more consistent manner
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COSINE: Performance

Result: Selection of collaborators has longer duration and is more 
consistent
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COSINE: Different contexts

Result: Our approach adapts to different characteristics of human 
mobility
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COSINE: Energy saving
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Summary and conclusions
• New method: We present COSINE, method for selecting optimal 

collaborators with longer and more consistent duration.

• New insights: We demonstrate existing methods are suboptimal and 
sensitive to characteristics of human mobility.

• Improved performance: We demonstrate significant improvements in 
energy and performance compared to state-of-the-art solutions.

• New applications: Our approach enables new types of collaborative 
applications, e.g., edge intelligence, micro data centres, and federated 
learning.
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Questions?

Thank you! (Do not hesitate to reach us via e-mail)

Huber Flores (huber.flores@ut.ee)

Agustin Zuniga (agustin.zuniga@helsinki.fi) 

Farbod Faghihi (farbod.faghihi@helsinki.fi) 

Xin Li (xin.li@helsinki.fi) 

Samuli Hemminki (samuli.hemminki@helsinki.fi) 

Sasu Tarkoma (sasu.tarkoma@helsinki.fi) 

Pan Hui (panhui@cse.ust.hk)

Petteri Nurmi (petteri.nurmi@helsinki.fi) 19
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