
Dynamic Re-configuration of Mobile Cloud Middleware based on Traffic Load
Huber Flores, Satish Narayana Srirama

Mobile Cloud Lab

Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia

{huber,srirama}@ut.ee

•To bring the cloud to the vicinity of a mobile

•To provide a reliable platform that handles the offloading and invocation of

resource-intensive tasks from the smartphones

•To enrich the mobile applications with multi-cloud functionality

•To handle the oscillating telecommunication loads with dynamic re-

configuration on the fly

• To increase the capabilities of our Mobile Cloud Middleware for managing

concurrency (Erlang re-implementation)

1 Project Goals
4 MCM Under Heavy Loads

6 Acknowledgement

2 Mobile Cloud Middleware (MCM)

The research is supported by the European Social Fund through Mobilitas program, the

Estonian Science Foundation grant ETF9287 and the European Social Fund for Doctoral

Studies and Internationalisation Programme DoRa.

While MCM was successful in handling a multi-cloud operation from a mobile cloud application,

a standalone framework, it faces the troubles of server utilization (e.g. CPU usage, memory

usage etc.) and congestion of incoming mobile traffic, when managing heavy loads. In other

words, each multi-cloud operation is an intensive task that overloads the server resources with

long waiting network connections (cloud transaction), high data transfer and data access I/O

rates

• Hides the complexity of dealing with multiple cloud vendors (abstraction of Web APIs from

different cloud levels using Clojure)

•Provides hybrid cloud and cloud interoperability

•Fosters the de-coupling of the handset with a specific cloud vendor

•Manages asynchronous delegation of mobile tasks to the cloud resources by relying on push

technologies.

•Enables to configure the deployment aspects of an offloaded task to the cloud

5 Re-configuration of MCM on demand
Cloud deployment is dependent on the type of services which are going to be provisioned. For

example, a notification server running on a private cloud may work better, if the queue of the

messages is distributed in memory among the notification cluster (if more than one server)

rather than being centralized in a database which is accessed by the cluster concurrently. This

kind of properties are only achieved by implementing the applications running on the cloud

using the right technology (e.g. concurrent languages). In other words, different

implementations behave differently and different approaches have to be applied for scaling the

applications.

Mobile Cloud Middleware Architecture

(flores et al., 2011)

3 MCM Migration to Erlang

While the prototype of MCM is working properly with the traditional Web technologies and can

scale horizontally (adding more nodes rather than increasing the capabilities of a single node),

as workload grows or shrinks, concurrent languages (e.g. Erlang) are preferable for cloud

environments as the applications can take full advantage of the inherent distributed features of

the cloud. For example, an application developed in Erlang and deployed on the cloud is highly

fault-tolerant as it can be replicated by the cloud (in minutes) and easily be configured.

