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Abstract

Mobile and cloud computing are two of the biggest forces in computer science.
Nowadays, a user either relies on the mobile or the cloud to perform various
daily life activities, e.g., social communication, video streaming, gaming, etc.
While the cloud provides to the user the ubiquitous computational and stor-
age platform to process any complex tasks, the smartphone grants to the user
the mobility features to process simple tasks, anytime and anywhere. Thus,
bridging the cloud closer to the mobile user is a reasonable approach to ob-
tain PC-like functionality on the move. Mobile Cloud Computing (MCC) has
emerged as the convergence of these two fields.

Specifically, smartphones, driven by their need for processing power, stor-
age space and energy saving are looking towards remote cloud infrastructure.
By exploiting the massive cloud capabilities, mobile devices are expecting to
find a way to overcome these issues. As a result, the main research question
of this work is how to bring the cloud infrastructure closer to the mobile user?
Naturally, since there are a lot of different architecture designs that can be
used to bind mobile and cloud resources, in order to answer this question, we
explored different approaches.

A mobile can outsource or offload a task to cloud in order to release the
device from doing it. Usually, a task that is outsourced or offloaded is resource-
intensive, which means that the device requires considerable computational
effort to process it. A task is outsourced at service level (task delegation)
and offloaded at code level (computational offloading). Outsourcing a task
requires the cloud to be reachable all the time by the device. Thus, network
connectivity is mandatory in order to activate the functionality of a mobile app.
In contrast, offloading a task allows a mobile app to activate its functionality
in presence or not of network communication.

Existent approaches have shown that outsourcing a task enriches a mobile
app with sophisticated functionality, but it does not ensure energy saving nor
better performance for the app. Since the design and deployment of cloud
services mostly follows SOA principles, initially, in this thesis, we investigated
how mobile cloud services can be integrated within the mobile apps. We found
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out that outsourcing a task to cloud requires to integrate and consider multiple
aspects of the clouds, such as resource-intensive processing, asynchronous com-
munication with the client, programmatically provisioning of resources (Web
APIs) and cloud intercommunication. To overcome these issues, we proposed
a Mobile Cloud Middleware (MCM) framework (multi-cloud middleware ap-
proach) that uses declarative service composition to outsource tasks from the
mobile to multiple clouds with minimal data transfer.

On the other hand, it has been demonstrated that computational offload-
ing is a key strategy to extend the battery life of the device and improves the
performance of the mobile apps. However, computational offloading still faces
many challenges pertaining to practical usage. As a result, a mobile app that is
instrumented with computational offloading mechanisms can be impacted by
a productive or counterproductive effect. Computational offloading is produc-
tive when the device saves energy without degrading the normal response time
of a mobile application, and counterproductive when the device wastes more
energy executing a computational task remotely rather than executing it lo-
cally. In this thesis, we also investigated the issues that prevent the adoption of
computational offloading, and proposed a framework, namely Evidence-aware
Mobile Computational Offloading (EMCO), which uses a community of de-
vices to capture all the possible context of code execution as evidence. By
analyzing the evidence, EMCO aims to determine the suitable conditions to
offload. EMCO models the evidence in terms of distributions rates for both
local and remote cases. By comparing those distributions, EMCO infers the
right properties, in which a mobile app has to offload. EMCO shows to be
more effective in comparison with other computational offloading frameworks
explored in the state of the art.

Finally, beyond the basic benefits of code offloading, we investigated how
computational offloading can be utilized to enhance the perception that the
user has towards the continuous usage of a mobile application. This percep-
tion is modeled as the fidelity, which depicts the time that takes to process a
computational task and display its result to the user. Since the cloud provides
a vast ecosystem of cloud servers with different computational settings, a task
that is offloaded to cloud can be accelerated at multiples levels, which means
that the response time of the app can be provided as a service based on the
suitable and individual perception of each mobile user. Our main motivation
behind providing fidelity at multiple acceleration levels is to provide adaptive
quality-of-experience (QoE), which can be used as mean of engagement strat-
egy that increases the lifetime of a mobile app. We envisioned that as part of
an app released in a store, a counterpart computational service in a cloud also
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is released by the same party that developed the app to improve the QoE of
the users that utilize the app.

4



Acknowledgements

First and foremost, I would like to thank my CREATOR for giving me once
more the strength to fulfill a dream. I would also like to thank to my family
for their unconditional support that transcends any distance.

I would like to thank to all the professors that taught me and advised me in
becoming a better person and researcher. To Prof. Marlon Dumas for help-
ing me to come to Estonia and always being (from the very beginning) a source
of inspiration and admiration. To my supervisor, Prof. Satish Srirama for
his guidance in this journey. To Prof. Pan Hui for fostering even further
my love for research. To Prof. Sasu Tarkoma for enriching my ideas with
extraordinary criticism and helping me to improve my creative thinking. To
Prof. Yong Li for teaching me the importance of shaping my ideas into novel,
beautiful, attractive, and consensus stories. To Prof. Rajkumar Buyya for
his valuable insights about my work. To my opponents, Prof. Jukka K.
Nurminen and Prof. Tommi Mikkonen for their valuable comments that
helped me to improve my dissertation. I would also like to express my grati-
tude to the SIGMOBILE community for showing me the meaning of what is
research.

I would also like to express my gratitude to my friends from Mobile Cloud
Lab and SyMLab for their friendship and encouragement during my studies,
and to all my unconditional friends that always put a smile on my face even
in the most complicated times. Specially, I want to thank to Eva Prüüs (and
her family), who has always been by my side.

Finally, I want to thank to the University of Tartu and all its academic
staff, specially from the Institute of Computer Science. I also want to thank
the financial support of the Tiger University Program of the Estonian In-
formation Technology Foundation, the European Regional Development Fund
through the EXCS, Estonian Science Foundation grant ETF9287, Target Fund-
ing theme SF0180008s12 and the European Social Fund for Doctoral Studies
and Internationalisation Programme DoRa.

5



Contents

List of Figures 9

List of Tables 11

Acronyms 12

I Overview 14

1 Introduction 15
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 A Review of Mobile Cloud Computing 24
2.1 Service-oriented Mobile Cloud . . . . . . . . . . . . . . . . . . . 24

2.1.1 Delegation of Mobile Tasks to Cloud . . . . . . . . . . . 28
2.1.2 Cloud Service Integration for Mobile Applications . . . . 30
2.1.3 Challenges and Technical Problems . . . . . . . . . . . . 32

2.2 Mobile Cloud Offloading . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Mobile Code Offloading . . . . . . . . . . . . . . . . . . 34
2.2.2 Computational Offloading in the Literature . . . . . . . . 37
2.2.3 Challenges and Technical Problems . . . . . . . . . . . . 40

2.3 Achieving App QoE through Computational Offloading . . . . . 43
2.3.1 App QoE . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1.1 Network Tuning . . . . . . . . . . . . . . . . . 45
2.3.1.2 Resource Allocation . . . . . . . . . . . . . . . 47

2.3.2 Challenges and Technical Problems . . . . . . . . . . . . 48
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6



Contents

II Contributions 51

3 Mobile Cloud Middleware 52
3.1 Design Goals and Architecture . . . . . . . . . . . . . . . . . . . 53

3.1.1 Asynchronous Support for Resource-intensive Tasks . . . 57
3.1.2 Generic Support for Asynchronous Delegation based on

XMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.2.1 Fundamentals and Extensions . . . . . . . . . . 60
3.1.2.2 Implementation Details of the Messaging Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 Asynchronous Delegation Performance . . . . . . . . . . 64
3.1.4 Evaluation and Analysis . . . . . . . . . . . . . . . . . . 65

3.2 Hybrid Cloud Service Composition of MCM . . . . . . . . . . . 67
3.2.1 Hybrid Cloud Service Implementation . . . . . . . . . . . 68
3.2.2 Hybrid Mobile Cloud Application - Demo Scenario . . . 70
3.2.3 Hybrid Cloud Service Composition Analysis . . . . . . . 74

3.3 Scalability of MCM . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Scalability Analysis of the MCM . . . . . . . . . . . . . 78

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Evidence-aware Mobile Computational Offloading 82
4.1 Design Goals and Architecture . . . . . . . . . . . . . . . . . . . 86

4.1.1 Development Toolkit . . . . . . . . . . . . . . . . . . . . 86
4.1.2 Smartphone-side . . . . . . . . . . . . . . . . . . . . . . 87
4.1.3 Cloud-side . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Evaluation and Validation . . . . . . . . . . . . . . . . . . . . . 97
4.2.1 Mobile Performance and Energy Saving . . . . . . . . . . 98
4.2.2 Scalability of the Framework . . . . . . . . . . . . . . . . 103

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Adaptive App Quality-of-Experience as a Service 107
5.1 Adapting App QoE: Design goals and Architecture . . . . . . . 108

5.1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Dynamic Computational Provisioning . . . . . . . . . . . . . . . 111
5.3 Implementation of the System . . . . . . . . . . . . . . . . . . . 114

5.3.1 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 QoE Client . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . 117
5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . 117

7



Contents

5.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion 126
6.1 Research Questions Revisited . . . . . . . . . . . . . . . . . . . 126
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Teenustele orienteeritud ja tõendite-teadlik mobiilne pilvearvu-
tus 138

8 Appendix 140
8.1 Appendix A: Sensor Classification Algorithm using MapReduce 140

References 143

8



List of Figures

2.1 Cloud service models . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Cloud scaling models, vertical scaling . . . . . . . . . . . . . . . 26
2.3 Cloud scaling models, horizontal scaling . . . . . . . . . . . . . 27
2.4 Accesing cloud infrastructure via service-oriented middleware . . 29
2.5 Conceptual components of Mobile Back-end as a Service . . . . 32
2.6 Components and functionality of a cloudlet system . . . . . . . 34
2.7 A code offloading architecture: components and functionalities . 36
2.8 Characterization of the offloading process that considers the

smartphones diversity and the vast cloud ecosystem . . . . . . . 42
2.9 Fidelity of a mobile app that can be achieved by using different

computational resources. . . . . . . . . . . . . . . . . . . . . . . 45
2.10 Telecommunication system overview . . . . . . . . . . . . . . . . 46

3.1 Architecture of the Mobile Cloud Middleware . . . . . . . . . . . 54
3.2 Interaction logic of the components of Mobile Cloud Middleware 56
3.3 Mobile cloud messaging architecture . . . . . . . . . . . . . . . . 62
3.4 XMPP delivery rate againts different mechanisms . . . . . . . . 66
3.5 Number of active devices that can receive notifications through

a XMPP cluster working as a notification service. . . . . . . . . 67
3.6 Workflow executed by MCM and triggered by a single service

invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Timestamps of the application scenario . . . . . . . . . . . . . . 73
3.8 Mobile cloud service invocation timestamps. Different under-

lying hardware is considered for the execution of infrastructure
services in Tcloud. Tcloud1, Tcloud2 and Tcloud3 use large,
medium and small instances, respectively. Moreover, Tcloud
also considers the provisioning time which has an average of
≈150 secs of any infrastructure type. . . . . . . . . . . . . . . . 75

3.9 Execution time of sensor analysis service (LinkExtraction) on
different instances: service at IaaS level . . . . . . . . . . . . . . 75

9



List of Figures

3.10 Execution time of the different cloud services that participate
in the workflow: services at SaaS level . . . . . . . . . . . . . . 75

3.11 Load test setup for the MCM . . . . . . . . . . . . . . . . . . . 78
3.12 Success rate of concurrent requests over multiple server nodes . 79

4.1 Smartphone apps that depict higher energy drain . . . . . . . . 85
4.2 Characterization of the offloading process that considers the

smartphones diversity and the vast cloud ecosystem . . . . . . . 86
4.3 Evidence-aware Mobile Code Offloading architecture . . . . . . . 87
4.4 Low-level Dalvik-x86 compiler built from Android open source

project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Execution of code using Dalvik-x86 . . . . . . . . . . . . . . . . 93
4.6 EMCO support for multi-tenancy and horizontal scaling . . . . 95
4.7 Comparison of local and remote distributions . . . . . . . . . . . 97
4.8 Average response time of the chess game application using dif-

ferent servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.9 Acceleration rates of a minimax algorithm in multiple cases of

execution (local, remote and pre-cached) . . . . . . . . . . . . . 100
4.10 Response time of pre-cache results in different instances types . 102
4.11 Comparison of EMCO with other frameworks, in terms of mo-

bile application performance . . . . . . . . . . . . . . . . . . . . 102
4.12 Comparison of EMCO with other frameworks, in terms of en-

ergy saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.13 EMCO ability for multi-tenancy . . . . . . . . . . . . . . . . . . 103

5.1 Session length and abandonment of an app . . . . . . . . . . . . 109
5.2 Overview of the system . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Overview of the dynamic allocation resources for computational

provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 Timestamps taken across the system in each of its components . 119
5.5 Actual times to handle the request in each component . . . . . . 119
5.6 Acceleration of code based on instance types. . . . . . . . . . . . 120
5.7 Response time of a mission game app. . . . . . . . . . . . . . . 121
5.8 Response time of a backtracking app. . . . . . . . . . . . . . . . 121
5.9 Load of incoming computational offloading requests. . . . . . . . 122
5.10 Capacity of the front-end to route the requests before turning

into a bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.11 Response time of the requests when scaling horizontally, from 1

to 7 surrogates . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10



List of Tables

2.1 Code offloading approaches from a mobile and cloud perspectives 38

4.1 Technical specification of the mobiles to evaluate EMCO . . . . 100

5.1 Technical specification of the mobiles to evaluate QoE adaptation117

11



Acronyms

AC2DM Android Cloud to Device Messaging Framework
AI Aritificial Intelligence
AOSP Android Open Source Project
API Application Program Interface
APK Android Application Package
APNS Apple Push Notification Service
AOT Ahead Of Time
CPU Central Processing Unit
CSV Comma-Separated Values
D2D Device to Device
DBMS Database Management System
DoS Denial of Service
EC2 Elastic Compute Cloud
EMF Eclipse Modeling Framework
GCM Google Cloud Messaging
GEF Grafical Editing Framework
GLPK GNU Linear Programming Kit
GPS Global Positioning System
GPU Graphics Processing Unit
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IoT Internet of Things
IM Instant Messaging
IP Internet Protocol
JID Jabber ID
JIT Just In Time
JSON JavaScript Object Notation

12



List of Tables

LB Load Balancer
LoC Lines of Code
LP Linear Programming
MBaaS Mobile Back-end as a Service
MCC Mobile Cloud Computing
MPNS Microsoft Push Notification Service
MQTT Message Queue Telemetry Transport
OC Offloading Candidate
OS Operating System
PaaS Platform as a Service
PC Personal Computing
QoE Quality of Experience
QoS Quality of Service
REST REpresentational State Transfer
RSS Rich Site Summary
RTT Round Trip Times
S3 Simple Storage Service
SaaS Software as a Service
SHA Secure Hash Algorithm
SIP Session Initiation Protocol
SOA Service Oriented Architectures
SSL Secure Sockets Layer
SyncML Synchronization Markup Language
TCP Transmission Control Protocol
TLS Transport Layer Security
URI Uniform Resource Identifier
URL Uniform Resource Locator
VoIP Voice Over IP
VM Virtual Machine
XML Extensible Markup Language
XMPP eXtensible Messaging and Presence Protocol

13



Part I

Overview

14



Chapter 1

Introduction

Mobile and cloud computing are two of the biggest forces in computer science.
Nowadays, a user either relies on the mobile or on the cloud to perform com-
putational or data storage tasks [1]. Mobile computing is a form of human -
computer interaction, which is extended to fit into human mobility patterns.
Mobile computing is potentiated by a distributed infrastructure, which con-
sists of network communication, mobile hardware, and software. With the
appearance of smartphones, mobile computing has expanded the horizon to
the creation of new devices, communication protocols, software development
techniques, business models, etc. Smartphones have pervaded our daily lives
through mobile apps, which allow the user to access Internet any time, any-
where and to consume a diversity of services like e-mail, video streaming, image
editing, document editing, web browsing, mobile payment, mobile messaging,
mobile games, among many others.

On the other hand, cloud computing is a style of computing, in which,
typically, scalable resources are provided as a service over the Internet to users
who need not have knowledge of, expertise in, or control over the infrastructure
that supports them. Cloud provisioning can occur at different levels, where
each level enables the user to interact with the service at certain granularity.
The most common levels are the Infrastructure level (IaaS), the Platform level
(PaaS), and the Software level (SaaS). Cloud computing mainly forwards a
utility computing model, where consumers pay on the basis of their usage (pay-
as-you-go). Moreover, cloud computing promises the ubiquity and availability
of virtually infinite resources [2].

Smartphone apps are generally developed following a stand alone or a
client-server model. In terms of user functionality, the main difference be-
tween them is that a client-server app requires connectivity to a remote source
to activate some of its features, e.g. web service. Naturally, the latency in
the communication influences the computational effort required by the device

15



to activate these features. Low latency communication can increase energy
consumption and degrade the perception that the user has towards the appli-
cations. Thus, stand alone apps are preferable to client-server apps (at low
latency), because they are not tied to network connectivity, which means that
the app functionality is always available in a tolerable manner that does not
affect the perception of the mobile user and the device is not overloaded with
extra effort to handle the communication. Hybrid apps that merge both models
can also be developed. Hybrid apps implement mechanisms for disconnected
operations [3], which allow the mobile app to provide stand alone functional-
ity even when the handset is not able to reach the remote system to request
information, e.g. e-mail, contacts, docs, etc. Disconnected operations caused
by disruption in communication introduce fault tolerance into the mobile sys-
tems. In the presence of network communication, the data in the mobile and
the remote system is synchronized using protocols like SyncML [4]. Hybrid
apps do not augment functionality of the app, but rather allow the user to
manage and transport his or her data more easily as these apps also provide
a counterpart version for Desktop computers, which can be accessed via Web
browser.

However, user’s expectation about getting PC-like functionality in the mo-
bile is growing every day. Advances in mobile technologies enable the mobile
apps to cope with such computational demands to some extent. Unfortu-
nately, the stand alone operation mode of the mobile devices is constrained
by battery life, storage and processing capabilities, which limit the acceptable
perceptibility and interactivity of the mobile apps. As a consequence, qual-
ity of the results presented to the user can vary abruptly (fidelity [5]), which
compromises the overall user’s experience.

To mitigate the issues of reduced mobile resources, smartphones are look-
ing towards augmenting capabilities via cloud resources [6]. As a result, the
domain known as Mobile Cloud Computing (MCC) is on the rise [7, 8]. A mo-
bile can outsource or offload a task to cloud in order to release the device from
doing it. Usually, a task that is outsourced or offloaded is resource-intensive,
which means that device requires considerable computational effort to process
it. A task that is outsourced to cloud is time consuming and commonly can-
not be processed in the device, e.g. analytics over big sensor data. A task is
outsourced to cloud following a SOA (service-oriented architectures) approach
using specialized Web APIs that enable the device to control the massive cloud
infrastructure at different service levels [6, 9, 10]. In this work, we have defined
this access approach to cloud as delegation schema [8].
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1.1 Problem Statement

In contrast, a task is offloaded to cloud following a code based approach,
where the computational task during runtime is moved from one place (device)
to another (surrogate) for its execution. Computational offloading has evolved
considerably from its initial notion of cyber-foraging [11]. Cloudlets [3, 12]
is one the first proposals in which a low power device through a thin client
connects to a rich and nearby server to offload computational tasks. The
ultimate goal of the approach is to save energy for the devices. However,
the applicability of the approach in high latency networks can cause energy
draining rather than energy saving [13, 14, 15], which suggests that the benefits
of computational offloading can just be exploited in low latency proximity [3].
To counter this problem, latest works have proposed higher instrumentation
of the code [16, 17, 18, 19, 20, 21], e.g. Method, Class, Thread, in order to
decrease data transmision to remote cloud. In this work, we also refer to this
access strategy to cloud as offloading schema.

1.1 Problem Statement

Mobile and cloud computing are converging as prominent technologies that
are leading the change to the post personal computing (PC) era. As a result,
there is a lot of effort from industry and academy to create innovative solutions
that bridge the cloud infrastructure closer to the mobile user [8]. Despite all
the previous works [7], MCC is still in its infancy, and thus there are several
open issues that need to be answered first before cloud computing can be
adopted in the design of future mobile systems [10, 14, 15]. In this work, we
ask the main research question, how to bring the cloud infrastructure closer to
the smartphone user?. This main research question investigates the following
problems.

1. Cloud service integration and composition within smartphone apps —Gen-
erally, service providers in the Internet, e.g. startups, released cloud ser-
vices that need integration within smartphones apps. Cloud services are
accessed via Web APIs, which provide the programmatic routines to con-
figure and consume the service from a mobile client. However, deploying
a Web API on a handset is demanding for the mobile operating sys-
tem when compared with traditional development environments for Web
applications. Smartphone introduces many constrains in the develop-
ment process of an application, e.g. compiler limitations, dependencies,
runtime environment incompatibility, etc. Thus, in most of the cases
the deployment of a Web API in a mobile application fails. Morever,
the problem scales further as the app requires to integrate services from
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1.1 Problem Statement

multiple clouds. Web APIs are not interoperable. Thus, one requires to
use a specific Web API from a specific vendor to access a particular ser-
vice. As a result, mobile clients become thicker and resource consuming.
Finally, adapting a Web API requires specialized knowledge of low level
programming techniques and most of the solutions are implemented ad
hoc. We investigated how to improve the integration of cloud services
within the smartphone apps, in short, we answer the question, how to
outsource tasks from the mobile using SOA?

2. Invocation of cloud services from the mobile — Many cloud services re-
quire considerable amount of time to process a request, e.g. MapRe-
duce [22], Hive [23], Spark [24], etc. A mobile cannot delegate a task
that requires long time waiting as this impacts the user’s experience
with the app. Moreover, this increases the computational effort of the
device to handle the communication. As a result, the device suffers from
energy draining. Thus, the problem to overcome is how to outsource a
task that requires long waiting without overloading the communication
with constant polling?

3. Mobile computational offloading in practice — Multiple research works
have proposed different code offloading strategies to empower the smart-
phone apps with cloud based resources [17, 18, 19, 20]. Yet, the uti-
lization of code offloading is debatable in practice as the approach has
been demonstrated to be ineffective in increasing remaining battery life
of mobile devices [13]. The effectiveness of an offloading system is deter-
mined by its ability to infer where the execution of code (local or remote)
represents less computational effort to the mobile, such that by decid-
ing what, when, where and how to offload correctly, the device obtains
a benefit. Code offloading is productive when the device saves energy
without degrading the normal response time of the apps, and counterpro-
ductive when the device wastes more energy executing a computational
task remotely rather than executing it locally.

Current works offer partial solutions that ignore the majority of these
considerations in the inference process. Most of the proposals demon-
strate the utilization of code offloading in controlled environment by
connecting to low-latency nearby servers, e.g. lab setups, and inducing
the code to become resource intensive during runtime [25], e.g. passing
an input that requires lot of processing. As a result, in practice, in most
of the cases, computational offloading is counterproductive for the de-
vice [13, 14]. Thus, at this point, the main questions about the strategy
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1.2 Methodology

are: can code offloading be utilized in practice, and what are the issues
that prevent code offloading to yield a positive result?

4. Adapting App Quality-of-Experience (QoE) — Past works modeled QoE
in terms of the response time of an app, in this context latency of the
response depicts the time that it takes to process a computational task
and display its result to the user [5]. It has been demonstrated that
an app can be adapted to multiple levels of responsiveness depending
on the allocated resources for app’s execution [26]. Unlike client-server
apps, in which QoE can be improved from the network operator or service
provider side, it is difficult to cope with the user’s demands in QoE for
stand alone apps due to the constrained resources and high diversity of
the smartphones. The problem that we overcome is how to adapt the
app to different QoE levels using computational offloading in order to
improve user’s experience?.

5. Scalability of mobile systems supported by cloud — Generally, systems
that follow the design of SOA can properly scale in the cloud for multi-
tenancy after the systems are benchmarked based on performance and
capacity. In the case of computational offloading, this is an open issue
as most of the proposed systems [7] foster one server per each mobile
architecture, which is unfeasible if we consider the amount of smart-
phones nowadays and the provisioning cost of running the server for
longer periods. Thus, the question to answer is: is it possible to provide
computational offloading as a service that scales based on incoming load
of mobile users?

1.2 Methodology

The research questions exposed in this work express a need for understand-
ing more about the infrastructural support that cloud computing can provide
to the mobile computing architectures. Hence, a design research approach
based on architectural modeling and development [27, 28], performance evalu-
ation [29] and capacity planning [30] is taken in order to answer the questions.
Naturally, since the design of a mobile architecture influences the quality of
experience that a user has towards a smartphone application, quantitative ex-
perimental research is conducted [31] in order to determine how cloud infras-
tructure improves certain aspects of the device, such as energy, performance,
usage, etc.
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1.3 Contributions

While in principle, computational offloading and task delegation are viable
methods to augment the capabilities of mobile devices with cloud power, they
focus on different issues and implement different techniques [32]. Consequently,
these approaches enrich the mobile applications from different perspectives at
diverse computational scales. Our contributions are described as follows:

• Mobile Cloud Middleware (MCM) — MCM counters the problems of ac-
cessing multiple cloud services through Web APIs and invoking a time
consuming operation from a mobile app [10]. The middleware abstracts
the Web APIs of multiple clouds at different levels and implements a
unique interface that responds, e.g. JSON-based (JavaScript Object
Notation), according to the cloud services requested, e.g. REST-based
(Representational State Transfer). MCM provides multiple internal com-
ponents and adapters, which manage the connection and communication
between different clouds. Since most of the cloud services require sig-
nificant time to process the request, it is logical to have asynchronous
invocation of the cloud service. Asynchronicity is added to the MCM
by using push notification services provided by different mobile applica-
tion platforms and by extending the capabilities of a XMPP (eXtensi-
ble Messaging and Presence Protocol) based on IM (Instant Messaging)
infrastructure [33]. Furthermore, MCM fosters a flexible and scalable
approach to create hybrid cloud mobile applications based on declara-
tive task composition. Task composition is considered for representing
each mobile task to be delegated as a MCM delegation component. A
composed task is developed graphically in an Eclipse plugin based on
user driven specifications and it is modelled as a data-flow structure,
where each task depicts a cloud service to be invoked. Once developed,
a composed task is deployed within the middleware for execution that is
triggered by a single invocation from the mobile. This means that data
transmission is minimized in order to decrease computational effort in
the device for going cloud-aware. Finally, MCM prototype was exten-
sively analyzed for its performance and scalability under heavy loads,
and the details are addressed in Chapter 3.

• Evidence-aware Mobile Computational Offloading (EMCO)—EMCO over-
comes the challenge to develop a code offloading architecture that can
potentiate the sustainability of power-consuming applications in prac-
tice. An offloaded task that is unfavorable for the device is the result
of a wrong decision process, which tends to get imprecise, based on the
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scope of observable parameters of the system that the process can con-
sider into its decision [14, 15]. We believe that computational offloading
to cloud is possible without a negative impact on the device. We think
that a richer context can be expressed in terms of multiple dimensions,
e.g. what, when, where, how, etc. A dimension defines the properties
that a mobile application must meet in order to offload a task. For in-
stance, a face recognition app installed on a device (which) offloads a task
at code level (what) under conditions (when) to a remote server of type
(where) to be executed (how) in parallel. Moreover, dimensions can scale
to consider other mobility parameters, e.g. user’s location, which can fa-
cilitate the process of pre-caching apps functionality. The key insight
of our work is to instrument the computational offloading mechanisms
with data analytics in order to reduce the negative impact that arises
from offloading to cloud due to wrong decisions, inaccurate code profil-
ing approaches and non-adaptive mechanisms. As a result, we develop a
framework, namely, Evidence-aware M obile Computational Offloading
(EMCO), where evidence is history data collected at the cloud from a
community of devices about the local and remote execution of a smart-
phone app [5]. EMCO extracts the dimensions from an analytic process
over that information. The purpose of the analysis is to characterize
the effect of computational offloading based on all possible contexts cap-
tured by the community. Moreover, the characterization is also utilized
to identify reusable results of generic code invocations that can be uti-
lized to respond to requests from other apps offloading to cloud. This
accelerates even further the response time of the apps. We envision that
as a part of the characterization process, pre-cached functionality from
the entire mobile application can be requested on demand. In this man-
ner, our cloud assistance approach encourages a system, where the cloud
is the expert and mobiles ask the cloud for its expertise. Major mod-
ifications are made in EMCO when compared with other frameworks.
At mobile app level, we equip our computational offloading mechanism
with the ability to feed up from incremental data analytics coming from
the cloud. We implement an asynchronous mechanism that uses push
notification technologies to deliver the data. The main advantage of this
mechanism is fault tolerence for disconnected operations, which means
that the data sent from the cloud will reach the device eventually when
connectivity is available. At surrogate level, we integrate the Dalvik ma-
chine from Android-x86 directly into the server to create a Dalvik-x86
surrogate, which provides better scalability for multi-tenancy. Finally,
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we developed a use case based on a chess game with artificial intelligence
to evaluate the framework. The evaluation shows that the proposed
framework is more effective to overcome the limitations that prevent the
adoption of code offloading in practice when compared with other solu-
tions.

• Adaptive App QoE as a Service — From our study about computational
offloading, which is presented in Chapter 4, we identified that besides
increasing battery life of the device and improving performance of the
apps, computational offloading can be utilized to enhance the perception
that the user has towards the continuous usage of the app. Since the
cloud provides a vast ecosystem of surrogates with different computa-
tional settings, a task that is offloaded to cloud can be accelerated at
multiple levels, which suggests that the response time of the app can be
provided as a service based on the suitable and individual perception of
each mobile user. In other words, continuous computational offloading
can smooth the overall execution of a mobile application, which means
that a user can obtain better quality of experience, which fits his or
her own expectations. The key insight of this work is that by provid-
ing multiple levels of acceleration for fidelity, it is possible to create an
engagement strategy to foster longer application usage. Adaptation of
QoE occurs based on history of app usage by detecting when a user loses
interest in using an app. Lose of interest is depicted by session length
and frequency of sessions of the app. The goal of the adaptation is to
engage the user by providing better QoE and to endure that engagement
for longer periods in order to increase the productive and competitive life
of the app in the application store. We investigated how to use compu-
tational offloading to dynamically adapt the fidelity of smartphone apps
to meet QoE requirements of the user. Naturally, to achieve our goal, we
redefine current offloading model, where a device is binded to a specific
server counterpart in the cloud. The reason is that this model is unfea-
sible in practice as it requires the cloud server to be active permanently
to provision computational resources to a unique device, which means
that paid resources are unnecessarily wasted when the server is not han-
dling computational requests. Moreover, we think that the allocation
of some high capability servers as surrogates is unrealistic for a single
user in long term due to the high provisioning price. As a consequence,
we extended our computational offloading framework with the ability
to provision continuous computational offloading in multi-tenancy envi-
ronments. Moreover, our system supports QoS policies to dynamically
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optimize the number of surrogates needed to handle a specific load of
computational offloading requests without affecting the QoE of the ac-
tive apps offloading to cloud. In this manner, QoS is introduced in the
computational service provisioning of the cloud while considering QoE
aspects of the mobile user.

1.4 Outline

This thesis is summarized as follows:
Chapter 2: presents a review in MCC, which explores the most relevant works
so far in the domain.
Chapter 3: introduces the concept of Mobile Cloud Middleware, goals, archi-
tecture design, implementation details and demonstrates MCM in action by
presenting several case studies in practice.
Chapter 4: highlights the problems of current computational offloading frame-
works and introduces our proposed framework EMCO, which counters the
problems of computational offloading in real scenarios.
Chapter 5: explains how to transform a computational offloading architecture
into a cloud service that provisions QoE for smartphones apps.
Chapter 6: presents the conclusions of the thesis.
Chapter 7: introduces the future directions that are identified from the thesis.
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Chapter 2

A Review of Mobile Cloud
Computing

In the emerging ecosystem of mobile cloud computing, a rich mobile app is one
that, at low resource consumption, processes huge amounts of information and
presents its result to the user at high fidelity levels. While the cloud provides
to the user the ubiquitous computational platform to process any task, the
smartphone grants the user the mobility features to process a computational
task at any time, anywhere. Thus, bridging the cloud closer to the mobile
user is a reasonable approach to obtain PC-functionality on the move. In this
section, we explore how to bring the cloud to the vicinity of the mobile.

2.1 Service-oriented Mobile Cloud

Cloud computing is changing the way in which services are developed and de-
ployed over the Internet. Service provisioning has never been so easy for the
developer, who now does not have to worry about the underlying infrastructure
that hosts the service. Cloud computing can be defined as a style of comput-
ing, in which, typically, scalable resources are provided as a service over the
Internet to users who need not have knowledge of, expertise in, or control over
the infrastructure that supports them [6]. Cloud computing fosters an elas-
tic approach, where the capacity of a service can decrease or augment during
runtime and implements a utility model, where a user pays the cost of using
that service for a specific period of time. The provisioning of cloud services
can occur at different levels as shown in Figure 2.1, where each level enables
the user to interact with the service at certain granularity.

Basic cloud levels are the Infrastructure level (IaaS), Platform level (PaaS)
and the Software level (SaaS). IaaS provides computational and storage ser-
vices. In the case of computational service, IaaS provisions physical or virtu-
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2.1 Service-oriented Mobile Cloud

Figure 2.1: Cloud service models

alized servers as instances, which can be accessed via multiple means such as
Unix terminal, remote desktop, etc. An instance is associated to a type, which
depicts the computational capabilities of a server, e.g. available memory, num-
ber of processors, etc. The cost of the instance is proportional to its type1.
In the case of storage service, IaaS provisions online storage with high repli-
cation schema. Generally, replication is used to guarantee availability of the
data in the cloud. PaaS provides the development platform, e.g. middleware,
which can be used by the software developer to build and deploy custom ap-
plications. SaaS delivers end-user applications, which can be accessed via any
Web browser. Finally, other levels are customized on top of these basic levels.
This customization is denoted as XaaS, where X represents the customized
software that is encapsulated for a particular purpose, e.g. NaaS (Network as
a Service), MaaS (Monitoring as a Service), etc.

An application deployed in the cloud as a service follows an SOA design,
the principles of which can be exploited to re-configure the service based on
demand. Generally, a service is re-configured depending on QoS policies, e.g.
response time of a request, which guarantees the conditions of the provision-
ing, e.g. integrity, availability, reliability, etc. Many different policies can be
applied to re-configure a cloud service, e.g. workload of users accessing the ser-
vice, computational effort to execute the application, etc. This re-configuration
process is also known as cloud scaling, which can be of two types, horizontal
and vertical. Figures 2.2 and 2.3 show these two types. Horizontal scaling
(Figure 2.2) consists of distributing the workload of the service among multiple

1http://aws.amazon.com/ec2/instance-types/
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2.1 Service-oriented Mobile Cloud

Figure 2.2: Cloud scaling models, vertical scaling

back-end instances running the application. Instances can be added (scaling
out) or removed (scaling in) dynamically. This approach requires the utiliza-
tion of a load balancer as front-end in order to distribute the workload among
back-end. Vertical scaling (Figure 2.3) consists of replacing the actual com-
putational capabilities of the instance running the service with higher (scaling
up) or lower (scaling down) computational settings.

Scaling is a key feature of cloud computing as it allows the application to
adapt to different requirements on the fly, e.g. handling different load of users,
improving application performance, etc. For instance, consider a steganogra-
phy service that receives as parameters two images and it’s running in one
cloud server. When a user uploads the images, the service encoded/decoded
the images into a single result. The response time of the service depends on
the computational capacity of the server to process the request. If the response
time of the service is too long, the performance of the service can be acceler-
ated by augmenting the number of servers that process the request, in other
words, the request is parallelized or the service is scaled.

Accessing the cloud infrastructure from a mobile application requires to
assume that network connectivity is always available and there is not disruption
in the communication channel. A mobile application can rely on cloud support
for the following reasons:

• Activate certain functionality of the mobile application, which is not
available when the device is in stand alone mode (online mode), e.g. web
service.
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2.1 Service-oriented Mobile Cloud

Figure 2.3: Cloud scaling models, horizontal scaling

• Replicate the data stored in the mobile with a storage service in the
cloud, e.g. SyncML. Data replication is useful for the device in order to
augment storage space, for instance, one picture in the mobile is uploaded
to cloud, and then the cloud sends a smaller version of the picture back
to the device. A mobile user can utilize this smaller version to access
the original picture at any time. Naturally, this feature is optional, it
can also be the case that the original picture can be available both in
the device and the cloud, but in this case, data replication is just useful
to decentralized data from the mobile, so that it can be accessed or
synchronized with other devices. Data synchronization is available in
both, online and offline operation modes of the device.

• Release the device from computational processing. By relying on an
external server which is equipped with a similar runtime environment like
the device, it is possible to move a computational task from the device
to the external server in order to release the device from processing the
task. Naturally, the device has to estimate when to move the task to the
external server because it can also be the case that the effort required for
the device to process the task externally is higher than processing the
task locally.

Depending on the purpose of the mobile application, it has to be adapted
to follow a specific access schema. Two different access schemas can be de-
fined: delegation and offloading. The rest of this subsection describes how a
smartphone app can implement such schemas to access cloud resources.
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2.1.1 Delegation of Mobile Tasks to Cloud

Generally, the integration between mobile and cloud is highly decoupled. This
loose integration happens through a mediator (aka middleware) that controls
every aspect in the communication and coordinates the attaching/detaching
between the back-end infrastructure and the mobile device. A mobile device
request access to a cloud resource by sending a request to the middleware,
which reads the request and performs the cloud operation. Once the result of
the operation is obtained, the middleware encapsulates the result and sends it
back to the mobile. Figure 2.4 shows a SOA access schema for mobile cloud. In
this delegation schema, the middleware abstracts the complexity of accessing
cloud into a single and centralized interface. The middleware implements all
the logic to manage network communication with the mobile, e.g. protocol
adaptation; and all the routines to manage the invocation of cloud services,
e.g. service composition, among others.

Outsourcing a mobile task to a remote server is a common operation that
is supported by any mobile platform through various mechanisms, e.g. Web
sockets, REST-based requests, etc. Different mobile platforms or versions of
the same mobile platform implement different approaches for managing net-
work communication. Usually, network communication between mobile and
cloud is synchronous. However, since many cloud services require considerable
time to process a task, mobile devices are also equipped to support asyn-
chronous communication. For instance, Android platform level-10 handles
REST-based requests synchronously. In contrast, Android platform level-16
and higher forces the developer to extend any network communication with the
AsyncTask Class running on a different thread so that it will be executed asyn-
chronously in the mobile background. An asynchronous approach is preferable
compared to a synchronous one as asynchronous communication guarantees to
keep the real-time interactivity of a mobile application and to maintain the
normal execution of a mobile application in case an exception arises.

A mobile application that requires resource-intensive functionality of the
cloud can benefit from an asynchronous communication in order to delegate
and monitor the status of a time consuming task in the cloud. However, this
approach introduces several other drawbacks, such as energy consumption (e.g.
keeping an open connection while transaction is performed), reliability in the
communication (e.g. what happens if the connection fails?) and recoverability
of a cloud transaction (e.g. fault tolerance strategies) among others. As a
result, middleware support is encouraged in order to reduce the computational
and energy overheads in the device [6].
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Figure 2.4: Accesing cloud infrastructure via service-oriented middleware

In this context, multiple middleware frameworks have been proposed in
the literature. Specifically, middlewares that allow a mobile application to
integrate cloud functionality have proposed new architecture designs. Among
those, the most relevant can be mentioned. MCCM (Mobile Cloud Comput-
ing Middleware) [9], which uses a middleware standing between the mobile
and the cloud for the composition of web services into mashups. It handles
creating user profiles from the context of the mobile phone, storing the system
configuration (pre-defined set of WS which can be consumed from the hand-
set) and the service configuration respectively, for managing existing resources
in the cloud. However, such middleware and the API support seems to be
tightly coupled in contrast to our proposed solution. Moreover, from studying
the applications developed with MCCM we observed that it is not suitable for
service invocations that require resource-intensive processing.

µCloud [34] is a middleware framework that models the functionality of
a mobile application as graph. Each node in the graph depicts a service,
which can be hosted in different providers. The idea is that a graph can be
represented as workflow, which can be executed by the mobile application.
While µCloud provides a simple prototype of the system, the middleware lets
many issues open regarding scalability, offline operation mode of the mobile
application, energy consumption of the mobile application, etc. The framework
just presents a discussion regarding those issues.

Cloud Agency [35] is another solution that aims to integrate GRID, cloud
computing, and mobile agents. Cloud Agency proposes to use GRID as mid-
dleware between the mobile and the cloud infrastructure. The specific role of
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GRID is to offer a common and secure infrastructure for managing the virtual
cluster of the cloud through the use of mobile agents. Agents introduce fea-
tures that provide the users a simple way for configuring virtual clusters and
establish the communication between the middleware and the mobile. How-
ever, such solution does not explain how agents enable keeping soft-real time
responses when a cloud service is invoked from the mobile or how the commu-
nication with different cloud providers is handled by the GRID. Moreover, it
does not quantify the effort required by the mobile to access cloud using GRID,
e.g. energy. Thus, it is hard to appreciate the benefits of such architecture
design.

Unlike previous works, we claim that the integration of cloud services within
the mobile applications can happen at different cloud computing levels. Since
accessing the massive cloud infrastructure requires considerable computational
effort for the device, e.g. time, energy, etc., we provide the architecture design
that enables the mobile to reduce the effort of using cloud resources in a hybrid
way. Morever, our solution allows the developer to create thin clients, which
means that the mobile client is lighter when compared with the thick clients
needed in other proposed architectures. Finally, we relied on push technologies
to equip the mobile applications with the asynchronous features to handle
resource-intensive executions of a remote cloud. The framework is described
in Chapter 3.

2.1.2 Cloud Service Integration for Mobile Applications

While cloud infrastructure is programmable through the utilization of Web
API, different clouds present different levels of granularity for configuring the
cloud resources. Depending on the cloud vendor architecture, a Web API may
be used for deploying applications from the scratch (e.g. MapReduce) or for
accessing existent functionality, which can be integrated with other software
applications. For instance, Amazon API and typica API2 allow to manage
EC2 instances (run scripts, attached volumes, etc.), jetS3t3 API provides ac-
cess to S3/Walrus and GData API4 enables configuring services such as cal-
endar, analytics, etc. Consequently, software applications that require cloud
intercommunication are forced to implement multiple Web APIs.

Since a Web API may suffer from disuses, changes or replacements with
time due to many reasons such as new Web API releases, improvements, etc.,
the development of applications becomes tightly coupled and difficult to port,

2http://code.google.com/p/typica/
3http://jets3t.s3.amazonaws.com/toolkit/guide.html
4http://code.google.com/apis/gdata/
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to reuse and to maintain. To address most of these problems, several open
source projects have been started. For instance, jclouds5 is a multi-cloud
library that claims transparent communication with different cloud providers
and the reuse of the source code while working with different services. Jclouds
provides a core library, which contains the core functionality and a set of
libraries, which handles the communication with any particular cloud. Current
version of jclouds supports Amazon, GoGrid, VMWare, Azure and Rackspace.
Other projects such as Apache Libcloud6 and Dasein Cloud API7 also provide
a Web API that abstracts away differences among multiple cloud providers,
however currently, jclouds API is the one that supports more cloud vendors.
Other projects such as deltacloud8 focus on managing particular services with
the same Web API. For instance, deltacloud allows utilizing the same code
routines for starting an instance in Amazon and in Rackspace.

Even though there are many Web APIs that can be used for abstracting
the communication with different cloud vendors, most of them are not de-
ployable within a mobile platform due to several drawbacks such as additional
dependencies, incompatibility with the mobile platform, integration with the
compiler, etc. For instance, the dalvik virtual machine of Android offers just a
portion of Java functionality. Consequently, the richness of the language can
not be exploited and libraries such as jclouds or typica can not be executed on
mobile platforms.

Furthermore, the development of mobile cloud applications using Web APIs
dramatically increases the effort of implementing simple operations such as of-
floading a file to remote storage, etc. For instance, we have ported jetS3t API
for Android platform level-10 and its apk file requires approximately 4.55 Mb
of storage on the mobile. Moreover, the application uses synchronous com-
munication for delegating data to cloud storage (S3/Walrus). Therefore, the
mobile resources get frozen while the transaction is being completed (≈ 6 sec-
onds when uploading a file of 3 Mb using a bandwidth with an upload rate of
≈ 1409 kbps). Even more, the source code is not compatible with higher ver-
sions of Android. Consequently, the application is not portable and a complete
re-implementation is needed for using it within other Android versions.

Currently, Web APIs for mobiles are still under development and often
target simple services such as storage. For instance, Amazon provides a stable
Web API for accessing S3 for both Android and iOS platforms. Moreover, at
the time of writing this thesis, other platforms like Windows Phone are also

5http://code.google.com/p/jclouds/
6https://libcloud.apache.org/
7http://dasein-cloud.sourceforge.net/
8http://incubator.apache.org/deltacloud/
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Figure 2.5: Conceptual components of Mobile Back-end as a Service

supported, but those Web APIs have just been released as beta version. We
have to mention as well that Web APIs from open source projects like JetS3t,
get deprecated due to the lack of support to upgrade the libraries to newer
versions of the mobile platform.

2.1.3 Challenges and Technical Problems

Cloud infrastructure enters as Mobile Back-end as a Service (MBaaS) into
mobile app development to facilitate the process of service integration and re-
utilization on the fly. However, unlike traditional systems, accessing the cloud
from a mobile is complex as the systems that support the mobile communi-
cation are constrained by many hardware, software and user’s requirements.
For instance, just to mention some, an app that implements resource intensive
operations is unsuitable as it drains the battery life (hardware). An app, the
functionality of which is highly dependent on distributed services is hard to
develop and deploy, and thus, the long lifetime of the app cannot be ensured
(software). The responsiveness of an app must meet the expectations of the
user, otherwise, the app is discarded (user’s experience) [29]. Cloud computing
can overcome many of these problems by providing suitable access schemas for
mobile systems.

As a result, we highlight the most basic components that a MBaaS has to
implement. The components are depicted in Figure 2.5. Each component is
described as follows:
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• API integration — encapsulates the Web APIs from different services
and exposes an interface that can be easily accessed by mobiles. API
integration foster the interoperability and integration of the services.

• Mobile analytics — collects information about app usage in order to
identify the most suitable QoE metrics in which an app hast to be ex-
ecuted. The purpose of adapting an app based on QoE metrics is to
increase user’s satisfaction and engagement.

• Cloud scalability — ensures the elastic provisioning and dynamic al-
location of the back-end to handle heavy load of mobile users and to
increase performance of the system.

• Asynchronous and synchronous (de)coupler — enables the device
a flexible coupling and decoupling with the back-end in order to avoid
energy draining caused by maintaining an active communication channel.

2.2 Mobile Cloud Offloading

Mobile cloud offloading (aka computational offloading, cyber-foraging) has
been re-discovered as a technique that allows to empower the computational
capabilities of mobiles with elastic cloud resources. Computational offloading
refers to a technique, in which a computational operation is extracted from
a local execution workflow, later, that operation is transported to a remote
surrogate for being processed, and finally, the result of that processing is syn-
chronized back into the local work flow [15]. Cloudlets [3] is one of the initial
works that propose the augmentation of mobile computational resources with
nearby servers in proximity, e.g. hot spots. Cloudlets overcome the problem of
connecting to high latency remote servers by bridging the cloud infrastructure
closer to the mobile user. The motivation of reducing the latency between
mobile device and cloud is to enrich the functionality of the mobile applica-
tions without degrading its perception and interaction in environments where
network communication changes abruptly. Figure 2.6 shows a basic cloudlet
architecture. The architecture consists of two parts, a client and a server lo-
cated in proximity, which means that there is no network hopping between the
device and the server. A nearby server is managed by a service provider using
virtual machines. A virtual machine is migrated from the cloud of the service
provider to the nearby server, so that cloud service provisioning (create, launch
or delete) for the mobile can occur from the nearby server. Alternatively, the
service provider also can migrate a service to other types of infrastructure,
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Figure 2.6: Components and functionality of a cloudlet system

e.g. base stations, in order to reduce the communication latency with the
device [12].

While a cloudlet overcomes the problems that arise from high communi-
cation latency, the deployment of a cloudlet is a complex task, as involves to
introduce specialized components or modify existent ones at low level of gran-
ularity, e.g., hardware. Thus, its adaptation is neither flexible nor scalable.
As a result, many other solutions have been proposed. The goal of these solu-
tions is to optimize the delegation of computational tasks by relying on higher
manipulation of the source code of the applications. In this process, computa-
tional tasks are delegated to powerful machines at code level as explained in
subsection 2.2.1. Notice that a cloudlet also can be equipped with strategies
to offload code. However, in this case, a cloudlet inherits the drawbacks of
code offloading, which destabilizes its architecture. Thus, a cloudlet cannot
guarantee any longer the smooth execution of the application at low resource
consumption.

2.2.1 Mobile Code Offloading

Code offloading is the opportunistic process that relies on remote servers to ex-
ecute code delegated by a mobile device. In this process, the mobile is granted
with the local decision logic to detect resource-intensive portions of code, so
that in the presence of network communication, the mobile can estimate where
the execution of code will require less computational effort (remote or local),
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which leads the device to save energy [36]. The evaluation of the code requires
to consider different aspects, for instance, what code to offload, e.g., method
name; when to offload, e.g. RTT (Round Trip Times) thresholds; where to of-
fload, e.g. type of cloud server; how to offload, e.g. split code into n processes,
etc. Most of the proposals in the field do not cover all these aspects, and thus
we describe a basic offloading architecture, which is shown in Figure 2.7. The
architecture consists of two parts: a client and a server. The client is com-
posed of a code profiler, system profilers and a decision engine. The server
contains the surrogate platform to invoke and execute code. Each component
is described in detail as follows:

1. Code Profiler is in charge of determining what to offload. Thus, por-
tions (C) of code —Method, Thread or Class—are identified as offload-
ing candidates (OCs). Code partitioning requires the selection about
the code to be offload. Code can be partitioned through a diversity of
strategies, for instance, a software developer can select explicitly the code
that should be offloaded using special static annotations [17], e.g. @Of-
floadable, @Remote, etc.. Other strategies analyze the code implicitly
during runtime by an automated mechanism [18]. Thus, once the appli-
cation is installed in the device, the mechanism selects the code to be
offloaded. In order to estimate if a portion of code is intensive or not, the
mechanism implements strategies such as static analyzes, history traces,
etc. Automated mechanisms are preferable over static ones as they can
adapt the code to be executed in different devices. Thus, automated
mechanisms overcome the problem of brute-force development in code
offloading, which consists in adapting the application every time that is
installed in a different device.

2. System profilers are responsible for monitoring multiple parameters
of the smartphone, such as available bandwidth, data size to transmit,
energy to execute the code, etc. These parameters influence when to
offload to cloud. Conceptually, the offloading process is optional, which
should take place when the effort required by the mobile to execute
the OC is lower in the case of remote invocation than local execution.
Otherwise, offloading is not encouraged as excessive amount of energy
and time is consumed in transmission of data to cloud.

3. Decision engine is a reasoner that infers when to offload to cloud. The
engine retrieves the data obtained by the system and code profilers, and
applies certain logic over them, e.g. linear programming, fuzzy logic,
markov chains, etc., so that the engine can measure whether the handset
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Figure 2.7: A code offloading architecture: components and functionalities

obtains or not a concrete benefit from offloading to cloud. If the engine
infers a positive outcome, then the mechanism to offload is activated and
the code is invoked remotely, otherwise, the code is executed locally. A
mobile offloads to cloud in a transfer ratio that depends on the size of the
data and the available bandwidth [36]. Usually, when code offloading is
counterproductive for the device, it is due to a wrong inference process,
which gets inaccurate based on the scope of observable parameters that
the system profilers can monitor [14].

4. Surrogate platfrom is the remote server located in the proximity of
the device or in the cloud, which contains the environment to execute
the intermediate code sent by the mobile, e.g. Android-x86. The remote
invocation tends to accelerate the execution of code as the processing
capabilities of the surrogate are higher than those of most smartphones.
In this context, the type of instance that acts as surrogate is important
as determines the acceleration in which a computational task is executed,
which impacts the overall response time of the app perceived by the user.
Higher types of instances can process a task faster than lower ones as
higher types can rely on larger memory span and higher parallelization in
multiple processors. Finally, the type of instance also defines its capacity
to handle multiple code offloading requests at once.
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2.2.2 Computational Offloading in the Literature

Table 2.1 describes most relevant proposals in code offloading. The table
compares the key features of the offloading architectures, namely the main
goal, how code is profiled, the adaptation context, the characterization of
the offloading process, and how code offloading is exploited from mobile and
cloud perspectives. From the table, the main goal defines what is the actual
benefit for using the associated framework. The mechanism used to profile
code provides information about the flexibility and integrability of the system.
The adaptation context specifies the considerations taken by the system to
offload. The characterization means whether the offloading system has a priori
knowledge or not about the effects of code offloading for the components of the
system. Finally, the exploitation highlights the mobile benefits obtained from
going cloud-aware, and the features of the cloud that are leveraged to achieve
those benefits. Moreover, we can also observe that currently, most of the effort
has been focused on providing the device with an offloading logic based on its
local context.

MAUI [17] proposes a strategy based on code annotations to determine
which methods from a Class must be offloaded. An annotation is a form of
metadata that can be agregated into the source code, e.g. classes, methods,
etc. An annotation allows the compiler to apply extra functionality to the
code before its called, e.g. override annotations. MAUI uses annotations to
identify methods that are resource-intensive for the device. Annotations are
introduced within the source code by relying on the expertise of the software
developer. Once the code is annotated, MAUI transforms all the annotated
methods into an offloadable format. This format equips the methods with
RMI capabilities. Since MAUI targets Windows Phones, it is developed using
.NET framework. Thus, RMI happens by using the WFC (Windows Commu-
nication Framework). During application runtime, the MAUI profiler collects
contextual information, e.g. energy, RTT, etc., if the MAUI profiler detects a
suitable context to offload code, then the execution of the code is delegated
to a remote server instead of being performed by the device. While MAUI
is successful in saving energy and shortening the response time of the mobile
applications, it suffers from many drawbacks. Since MAUI uses code annota-
tions, it is unable to adapt the execution of code in different devices. Thus,
the developer is forced to adapt an application to a specific device, which is
considered a brute-force approach. Moreover, MAUI suffers from scalability,
which means that each mobile that implements MAUI requires to be attached
to one specific server acting as a surrogate.
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Table 2.1: Code offloading approaches from a mobile and cloud perspectives

Code offloading strategies Mobile perspective Cloud perspective

Framework Main goal Code profiler Offloading adaptation
context

Offloading
characterization Applications effect Features exploited

(Besides server)

MAUI [17] Energy-saving Manual
annotations

Mobile
(what, when) None Low resource consumption,

Increased performance None

Odessa [37] Responsiveness Automated
process Mobile None Applications are up

to 3x faster None

CloneCloud [18] Transparent
code migration

Automated
process

Mobile
(what, when) None Accelerate responsiveness None

ThinkAir [19] Scalability Manual
annotations

Mobile + Cloud
(what, when, how) None Increased performance Dynamic allocation and

destruction of VMs

COMET [20]
Transparent

code migration
(DSM)

Automated
process

Mobile
(what, how) None Average speed

gain 2.88x None

EMCO [21]
Energy-saving,
Scalability

(Multi-tenancy)

Automated
process

Mobile + Cloud
(what, when, where, how)

Based on historical
crowdsourcing data

Based on context
(Low resource consumption,
increased responsiveness, etc.)

Dynamic allocation and
destruction of VMs,
Big data processing,

Characterization-based
utility computing

COSMOS [38] Responsiveness Manual
process

Mobile
what None Increased performance by

choosing right surrogate
Resource allocation
decided by user

Other works [7] Responsiveness Manual
annotations

Mobile
what, when None Increased performance None
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Similarly, CloneCloud [18] encourages a dynamic approach at OS level,
where a code profiler extrapolates pieces of bytecode of a given mobile com-
ponent to a remote server. Unlike MAUI, CloneCloud offloads code at thread
level. CloneCloud uses static analysis to partition code, which is an improve-
ment over the annotation strategy proposed by MAUI. By using a static an-
alyzer, code can be annotated dynamically. Thus, code to offload is adapted
based on the type of device without modifying or changing any implementa-
tion of the application. However, code profiling is complicate as its execution
is non-determistic. Thus, it is difficult to verify the runtime properties of the
code, which can cause unnecessary code offloading or even offloading overhead.
Moreover, many other parameters also influence when choosing a portion to
code to offload, e.g. the serialization size, latency in the network, etc.

COMET [20] is another framework for code offloading, which follows a
similar approach as CloneCloud. COMET strategy puts emphasis on how to
offload rather than what and when. COMET’s runtime system allows un-
modified multi-threaded applications to use multiple machines. The system
allows threads to migrate freely between machines depending on the workload.
COMET is a realization built on top of the Dalvik Virtual Machine and lever-
ages the underlying memory model of the runtime to implement distributed
shared memory (DSM) with as few interactions between machines as possible.
COMET makes use of VM-synchronization primitives. Multi-thread offload-
ing accelerates even further the execution of applications in which code can be
parallelized.

ThinkAir [19] framework is one which is targeted at increasing the power
of smartphones using cloud computing. ThinkAir tries to address MAUI’s lack
of scalability by creating virtual machines (VMs) of a complete smartphone
system on the cloud. Moreover, ThinkAir provides an efficient way to perform
on-demand resource allocation, and exploits parallelism by dynamically creat-
ing, resuming, and destroying VMs in the cloud when needed. However, since
the development of mobile application uses annotations, the developer must
follow a brute-forced approach to adapt his/her application to a specific device.
Moreover, resource allocation in the cloud seems to be static from the handset
as the device must be aware of the infrastructure with anticipation. Thus,
the approach is neither flexible nor fault tolerant. The scalability claimed by
ThinkAir is not multi-tenancy, the system creates multiple virtual machines
based on Android-x86 within the same server for code parallelization.

Odessa [37] is a framework that focuses on improving the perception of
augmented reality applications, in terms of accuracy and responsiveness. The
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framework relies on automatic parallel partitioning at data-flow level to im-
prove the performance of the applications, so that multiple activities can be
executed simultaneously. However, the framework does not consider dynamic
allocation nor cloud provisioning on demand, which is a key point in a cloud
environment.

History-based approaches are also proposed to determine what code to of-
fload [39]. However, the weak point of these approaches is the large amount
of time required to collect data, which can produce accurate results. More-
over, these strategies are sensitive to changes, which means that when the
device suffers drastic changes, e.g. more applications are installed, the history
mechanisms need to gather new data to calibrate again. The size of the data
collected in the mobile can also be counterproductive for the device as it steals
storage space.

COSMOS [38] is a framework that provides code offloading as a service at
method level using Android-x86. The framework introduces an extra layer in a
traditional offloading architecture to solve the mismatch between how individ-
ual mobile devices demand computing resources and how cloud providers offer
them. However, it is not clear how the offloading process is encapsulated as
SOA. Moreover, the framework is compared with CloneCloud, which is an un-
fair comparison as CloneCloud mechanisms offload code at thread level. Other
frameworks for computational offloading also are proposed [7], but they do not
differ significantly from basic implementation or concept.

We claim that the instrumentation of apps alone is insufficient to adopt
computational offloading in the design of mobile architectures that relies on
cloud. Computational offloading on the wild is shown mostly to introduce more
computational effort to the mobile rather than reduce processing load [13]. In
this context, CDroid [13] is a framework that attempts to improve offloading in
real scenarios. However, the framework focuses more on data offloading than
computational offloading. As a result, we propose in this thesis a framework
that attempts to overcome the issues of computational offloading in practice.
Our framework automates the process of infering the right matching between
mobile and cloud considering multiple levels of granularity [21]. The framework
is described in Chapter 4.

2.2.3 Challenges and Technical Problems

Computational offloading for smartphones has not changed drastically from
its core principles [25]. However, the effectiveness of its implementation in
practice shows to be mostly unfavorable for the device outside controlled en-
vironments. In fact, the utilization of code offloading in real scenarios shows
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to be mostly negative [14], which means that the device spends more energy
on the offloading process compared to the actual energy that is saved. Conse-
quently, the technique is far away from being adopted in the design of future
mobile architectures. Our goal is to highlight the challenges and obstacles in
deploying code offloading. The issues are described as follows:

• Inaccurate code profiling —Code profiling is one of the most challeng-
ing problems in an offloading system, as the code has a non-deterministic
behavior during runtime, which means that it is difficult to estimate the
running cost of a piece of code considered for offloading. A portion of
code becomes intensive based on factors [14], such as user input that
triggers the code, type of the device, execution environment, available
memory and CPU, etc. Moreover, once code is selected as OC, it is also
influenced by many other parameters of the system that come from mul-
tiple levels of granularity, e.g. communication latency, data size trans-
ferred, etc. As a result, code offloading suffers from a sensitive tradeoff
that is difficult to evaluate, and thus, code offloading can be productive
or counterproductive for the device [40]. Most of the proposals in the
field are unable to capture runtime properties of code, which makes them
ineffective in real scenarios.

• Integration complexity —The adaptation of code offloading mecha-
nisms within the mobile development lifecycle depends on how easily the
mechanisms are integrated and how effective is the approach in releasing
the device from intensive processing. However, implementation complex-
ity does not necessarily correlate with effective runtime usage. In fact,
some of the drawbacks that make code offloading to fail are introduced
at development stages, for example, in the case of code partitioning that
relies on the expertise of the software developer, portions of code are
annotated statically, which may cause unnecessary code offloading that
drains energy [41]. Moreover, annotations can cause poor flexibility to
execute the app in different mobile devices. Similarly, automated strate-
gies are shown to be ineffective and require major low-level modifications
in the core system of the mobile platform, which may lead to privacy and
security issues.

• Dynamic configuration of the system —Next generation mobile de-
vices and the vast computational choices in the cloud ecosystem makes
the offloading process a complex task as depicted in Figure 2.8. Although
the savings in energy that can be achieved by releasing the device from
intensive processing, a computational offloading request requires to meet
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Figure 2.8: Characterization of the offloading process that considers the smart-
phones diversity and the vast cloud ecosystem

the requirements of user’s satisfaction and experience, which is measured
in terms of responsiveness of the app. Consequently, in the offloading
decision, a smartphone has to consider not just potential savings in en-
ergy, but also it has to ensure that the acceleration in the response time
of the request will not decrease. This is an evident issue as the compu-
tational capabilities of the latest smartphones are comparable with some
servers running in the cloud, for instance, consider two devices, Samsung
Galaxy S (i9000) and Samsung Galaxy S3 (i9300), and two Amazon
instances, m1.xlarge and c3.2xlarge. In terms of mobile application per-
formance, offloading intensive code from i9000 to m1.xlarge increases the
responsiveness of a mobile application at comparable rates to an i9300.
However, offloading from i9300 to m1.xlarge does not provide same ben-
efit. Thus, to increase responsiveness is necessary to offload from i9300
to c3.2xlarge (refer to Chapter 4 to gain more understanding about it).
It is important to note, however, that constantly increasing the capa-
bilities of the back-end do not always speed up the execution of code
exponentially, as in some cases, the execution of code depends on how
the code is written, for instance, code is parallelizable for execution into
multiple CPU cores (parallel offloading) or distribution into large scale
GPUs (GPU offloading).

• Offloading scalability and offloading as a service —Typically, in
a code offloading system, the code of a smartphone app must be located
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in both, the mobile and server as in a remote invocation, a mobile sends
to the server not the intermediate code, but the data to reconstruct that
intermediate representation so that it can be executed. As a result, an
offloading system requires the surrogate to have similar execution envi-
ronment as the mobile. To counter this problem, most of the offloading
systems proposed to rely on the virtualization of the entire mobile plat-
form in a server, e.g. Android-x86, .Net framework, etc., which tends to
constrain the CPU resources and slows down performance. The reason is
that a mobile platform is not developed for large-scale service provision-
ing. As a result, offloading architectures are designed to support one user
at the time, in other words, one server for each mobile [19, 38]. This re-
strains the features of the cloud for multi-tenancy and utility computing.
Moreover while a cloud vendor provides the mechanisms to scale Service-
Oriented Architectures (SOA) [10] on demand, e.g. Amazon autoscale, it
does not provide the means to adapt such strategies to a computational
offloading system as the requirements to support code offloading are dif-
ferent. The requirements of a code offloading system are based on the
perception that the user has towards the response time of the app. The
main insight is that a request should increase or maintain certain quality
of responsiveness when the system handles heavy loads of computational
requests. Thus, a code offloading request cannot be treated indifferently.
The remote invocation of a method has to be monitored under differ-
ent system’s throughput to determine the limits of the system to not
exceed the maximum number of invocations that can be handled simul-
taneously without losing quality of service. Furthermore, from a cloud
point of view, allocation of resources cannot occur indiscriminately based
on processing capabilities of the server as the use of computational re-
sources are associated with a cost. Consequently, the need of policies for
code offloading systems are necessary considering both, the mobile and
the cloud.

2.3 Achieving App QoE through Computational
Offloading

In the previous subsection, we explained how computational offloading can be
used by the mobile to increase battery life and accelerate the execution time
of resource-intensive portions of code. However, beyond these basic benefits,
computational offloading can also be utilized to enhance the perception that
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the user has towards the continuous usage of a mobile application. This per-
ception is depicted as the fidelity of the mobile application during runtime [5].
Fidelity models the response time of an application as latency, which represents
the time that takes to process a computational task and show its result to the
mobile user. Fidelity depends on the computational resources that are assigned
to run the application. This includes the amount of allocated resources, their
processing capacity and runtime availability, among others. Since the cloud
provides a vast ecosystem of servers with different computational settings, e.g.
number of processors, type of processor, available memory, etc., a task that
is offloaded to cloud can be accelerated based on the processing capabilities
of the server. In other words, a server with low processing capabilities will
execute a task slower than a server with high processing capabilities. Thus,
based on the multiple types of servers, a mobile application can achieve multi-
ple acceleration levels, which can be provided as a service based on the suitable
and individual perception of each mobile user. Certainly, it is expected for a
server in the cloud to have more computational power than a mobile device.
This is the truth in most of the cases. However, some last generation devices
are as powerful as some servers in the cloud. As a result, a mobile device has
to be aware of the type of cloud server to be used in order to augment the
processing resources of the mobile (discussed further in Chapter 5).

Figure 2.9 exemplifies this reasoning. We assumed that the processing
resources of the device are lower than the servers in the cloud. The figure
shows the response time that is expected when executing a mobile task, using
the local mobile resources, a weak surrogate, e.g. m1.medium, and a powerful
surrogate, e.g. m1.xlarge. By adapting the type of surrogate that executes
the task, it is possible to tune the response time of the application in order to
fit the expectations of the user regarding the performance of the app. Thus,
improving the QoE of the user.

2.3.1 App QoE

Smartphone apps are developed following a stand alone or a client-server
model. In terms of user functionality, the main difference between them is
that a client-server app requires connectivity to a remote source to activate
some of its features, e.g. web service. It is arguable that even though network
connectivity will become ubiquitous [42], the latency of the communication will
be always a issue for the device. Usually, a device requires considerable com-
putational effort and energy to access remote services that are in low latency
networks. Moreover, the perception of the user is degraded, which influences
the reputation of the mobile application. As a result, stand alone apps are
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Figure 2.9: Fidelity of a mobile app that can be achieved by using different
computational resources.

preferable to client-server apps (at low latency) because they are not tied to
network connectivity, which means that the app functionality is always avail-
able, the perception of the user is not perturbed and the device requires less
computational effort to execute the application. Hybrid apps that merge both
models through disconnected operations also can be developed [3].

A user is able to perceive the response time of an app, e.g. instant reaction
(≈0.1 second), interaction is not disrupted, but delay may be noticed (1.0 sec-
ond), interaction is disrupted (>10 seconds) [29]. Understanding and adapting
an app based on user’s QoE has been explored extensively [43, 44, 45]. App
QoE through code acceleration is important to optimize the tradeoff between
assigned resources and quality of the response time [5]. Moreover, app QoE
defines the impact and survival of the app in the mobile market [46].

QoE can be measured following a subjective [43] or objective [47, 48] ap-
proach. With the subjective approach, users evaluate and score the app based
on their experience. While the subjective method can produce accurate re-
sults in adapting app QoE, it depends on explicit user’s evaluation, which is
inconvenient in practice for user’s interaction. On the other hand, the objec-
tive approach derives the subjective app QoE from technical and non-technical
parameters of the app. The goal of the objective approach is to tune these
parameters to improve app QoE.

Multiple approaches can be utilized to improve the QoE of mobile applica-
tions. We characterize these strategies into two types as follows:

2.3.1.1 Network Tuning

A telecommunication infrastructure is composed of multiple network devices,
e.g. tower, beacon, access point, mobile, etc. The interaction of each network
device influences the overall performance of the communication. Figure 2.10
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Figure 2.10: Telecommunication system overview

shows an overview of a telecommunication system. By measuring and moni-
toring the network, it is possible to extrapolate network metrics, e.g. bitrate,
delay, etc. These metrics allow the telecommunication provider determine its
level of coverage and quality of service provisioning. Network metrics are im-
portant for the provider as the metrics extract relevant information that can
be utilized to optimally increase the size of the network. For instance, as the
number of users increase in one location, the telecommunication provider can
decide to place an extra tower nearby that location in order to provide its
service for new potential users and to meet its service level agreement with
customers, even in peak times.

Network tuning approaches focuses on improving the response time of
client-server apps. By adapting network metrics dynamically, these approaches
aim to improve the communication between the mobile application and the
remote server. Network tuning can be achieved by software or hardware adap-
tation. Software adaption is oriented towards optimizing communication pro-
tocols [49], data transfer and fixing inefficiencies in the mobile apps [50], for
instance, by analyzing the performance of different protocols, it can choose the
most suitable based on the application requirements [51, 52], e.g. TCP (Trans-
mission Control Protocol), HTTP (Hypertext Transfer Protocol). Hardware
adaptation is oriented to modify the behavior of the network devices, for in-
stance, signal strength of the network can be augmented by increasing the
coverage of a tower [48].

Several past works study how cellular network operators can estimate net-
work metrics to support better service provisioning for apps [47, 53]. QoE
metrics for mobile applications can be extracted from various sources and an-
alyzed with different approaches proposed in the literature, for instance, by
measuring the impact of the bitrate, jitter and delay on VoIP calls, and an-
alyzing that information with machine learning, it is possible to estimate the

46



2.3 Achieving App QoE through Computational Offloading

user’s satisfaction regarding the quality of the audio [54]. By collecting his-
tory information from session length and abandonment rate of an application,
it is possible to troubleshoot network devices, e.g. tower, in order to improve
the web QoE in mobile browsers [48]. By analizing the streaming of a video
in terms of response time, it is possible to built adaptive models that adjust
the frames per second of a video based on the perception of the user. More-
over, by such perception, these models can also be used as a user engagement
technique [55].

Since this work aims to adapt the QoE of a client-server apps (in terms of
response time) when interacting with a user, we study how to estimate QoE
metrics of these applications based on user’s perception and satisfaction. Un-
like existent works, our proposal is not oriented to network tuning. However,
we relied on determining QoE metrics in order to adjust the response time of
the application. Our solution transforms a stand alone app into a client-server
app using computational offloading mechanisms. Certainly, stand alone apps
that implement computational offloading can also benefit from network tun-
ing. However, our proposal does not focus on improving communication, but
accelerating the code of the mobile app when it is offloaded to remote power-
ful machines. In our system, code is accelerated to higher levels in order to
counter the cost of communication latency. While this has been proposed by
other works (Refer to section 2.2.1), our contribution aims to utilize computa-
tional offloading as a user engagement technique. The key insight of the work
is to improve the response time of the application each time abandonment of
the application is detected. We envisioned this approach for increasing the life
time of a mobile application.

2.3.1.2 Resource Allocation

Generally, a mobile application is executed in the device using the resources
that are assigned by the OS. One application with large execution space will
execute better (smoothly) than one with short execution space, for instance, a
mobile application running in normal mode differs from one running in energy
saving mode. Determining the right amount of resources to be assigned is
critical for the device in order to avoid over and under provisioning of resources.
While this can easily be optimized by analyzing the history execution of the
app, it arises a problem of perception for the user. Different users have different
perceptions about the minimal response time in which a mobile application has
to work. Thus, the resources assigned to execute a mobile application have to
be adapted based on the perception of the user regarding the performance of
the application. Naturally, it is expected that the resources assigned reduce
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the energy consumption of the device while keeping the smoothness of the app
required by the user. Otherwise, the benefits of such optimization can turn
into drawbacks, for instance, by assigning large space of resources to execute
the app, the perception of the user is improved, but the satisfaction regarding
the battery life declines.

Past works [5] modeled the response time of an app in terms of latency,
which depicts the time that takes to process a computational task and display
its result to the user. This is also known as fidelity of the application. QoE of
a stand alone app is achieved by tuning its fidelity. It has been demonstrated
that an app can be adapted to multiple levels of fidelity depending on the
allocated mobile resources for app’s execution [26], which is translated into
multiple scales of responsiveness.

However, with the rapid adoption of cloud computing within the mobile
architectures, more recent works [15] have studied how to allocate external
resources in order to outsource a task to a more powerful infrastructure in or-
der to extend battery life (Refer to section 2.2.1 about mobile computational
offloading). These works proposed one server per each smartphone architec-
ture [15], which is infeasible if we consider the amount of smartphones nowa-
days and the provisioning cost of constantly running a server for one particular
user. High capabilities servers as surrogates are unrealistic for a single user in
long term due to the high provisioning price. Moreover, these works do not
consider that code can be accelerated based on utility computing. Thus, unlike
previous proposals, our study combines fidelity adaptation, external resource
allocation, and utility computing. Our goal is to achieve fidelity tuning using
a pool of augmented cloud resources with multiple computational capabilities.
To the best of our knowledge, this thesis presents the first system to adapt
QoE for stand alone apps using code offloading.

2.3.2 Challenges and Technical Problems

In order to provide a cloud service that can be used by a smartphone app to
enhance its fidelity, many issues have to be addressed. We envisioned that as
part of an app released in a store, a counterpart computational service in a
cloud also is released by the same party that developed the app to improve
the QoE of the users of the app. Naturally, to achieve this, many challenges
have to be overcome. First, implementing an objective strategy in the mobile
that identifies the QoE of a particular user. Second, to grant the offloading
architectures the ability to handle multi-tenancy, which has not been shown in
other works. Finally, since the computational provisioning of cloud has a cost,
capacity planning is required to optimize the amount of servers to handle a
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specific load of active users. Throughout this thesis, we study how to achieve
app QoE using computational offloading and propose solutions for each of the
described challenges.

A lot of frameworks have been proposed for computational offloading [25].
Besides a few works that focus on scaling up (vertical scaling) a server to paral-
lelize the code of computational requests [37], we have not found architectures
that can scale in a horizontal fashion. This clearly can be seen as current
frameworks do not take into consideration the utility computing features of
the cloud, which is translated into server selection based on provisioning cost.
As a result, we extended our computational offloading framework presented in
Chapter 4 with the ability to provision continuous computational offloading
in multi-tenancy environments. Moreover, our system supports QoS policies
to dynamically optimize the number of surrogates needed to handle a specific
load of computational offloading requests without affecting the QoE of the
active apps offloading to cloud. In this manner, QoS is introduced to the com-
putational service provisioning of the cloud while considering QoE aspects of
the mobile user. Finally, unlike a traditional architecture for code offloading
that consists of a client and server, our system also includes a load balancer.

2.4 Summary

Mobile and cloud computing convergence is shifting the way in which telecom-
munication architectures are designed and implemented [3]. Mobile devices
are looking towards cloud-aware techniques, driven by their growing interest
to provide ubiquitous PC-like functionality to mobile users. These functionali-
ties mainly target at increasing storage and computational capabilities. On one
hand, storage limitations of the devices have been overcome by many cloud
services provided in the Internet, which are built under different protocols.
For example, Amazon S3 and Dropbox9 provide REST-based access, while
Picasa10 and Funambol11 provide SyncML-based access. Service-oriented inte-
gration enriches the mobile apps with a variety of services and facilitates the
development of apps that requires access to cloud services via MBaaS. More-
over, mobile systems supported by SOA provide better high availability, fault
tolerance, and scalability.

On the other hand, binding computational cloud services such as Amazon
EC2 to low-power devices such as smartphones have been proven feasible with
latest mobile technologies [17, 18], mostly due to virtualization technologies

9https://www.dropbox.com/
10http://picasa.google.com/
11http://www.funambol.com/
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and their synchronization primitives, enabling transparent migration and exe-
cution of intermediate code. Multiple research works have proposed different
code offloading strategies to empower the smartphone apps with cloud based
resources [17, 18, 19, 20]. However, the effectiveness of its implementation in
practice shows to be mostly unfavorable for the device outside controlled en-
vironments. In fact, the utilization of code offloading in real scenarios shows
to be mostly negative [14], which means that the device spends more energy
in the offloading process compared to the actual energy that is saved. Conse-
quently, the technique is far away from being adopted in the design of future
mobile architectures. In further chapters, we present our contributions, which
overcome most of the explained issues. We also envisioned the utilization of
computational offloading to achieve customized QoE for a particular user.
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Chapter 3

Mobile Cloud Middleware

Hybrid cloud and cloud interoperability are essential for mobile scenarios in
order to foster the de-coupling of the handset to a specific cloud vendor, to en-
rich the mobile applications with the variety of cloud services provided on the
Web, and to create new business opportunities and alliances [56, 57]. However,
developing a mobile cloud application involves adapting different Web APIs
from different cloud vendors within a native mobile platform. Vendors gener-
ally offer the Web API as an interface that allows programming the dynamic
computational infrastructure that supports massively parallel computing [10].
Deploying a Web API on a handset is demanding for the mobile operating
system due to many reasons like compiler limitations, additional dependen-
cies, runtime environment incompatibility, etc., and thus, in most of the cases,
the deployment just fails. Moreover, adapting a Web API requires specialized
knowledge of low level programming techniques and most of the solutions are
implemented ad hoc.

In terms of data storage facilitation of the cloud, existing mobile cloud ap-
proaches, such as data synchronization (via SyncML), allow the deployment
of a Web API on the device for retrieving data from the cloud. For instance,
Funambol [58] or gdata-calendar Web API can be integrated to an Android
application to synchronize calendar information (e.g. alarms, tasks etc.). How-
ever, this approach focuses on replicating the data located in the cloud with
the data located in the handset, which is not a real improvement to enrich
app functionality. Alternatively, cloud services can be encapsulated as Web
services that can be invoked directly using a simple REST mobile client [59].
However, due to the time consuming nature of a cloud request, this can cause
an overhead in the mobile resources without a proper asynchronous commu-
nication mechanism. Moreover, by using a REST mobile client, the device
is forced to perform multiple transactions and to handle the results of those
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transactions locally, which is costly from the energy point of view of the hand-
set. The number of transactions is directly associated with the number of
cloud services utilized in the mobile cloud application.

To counter the problems such as the interoperability across multiple clouds,
invocation of resource intensive processing from the handset and to introduce
the platform independence feature for the mobile cloud applications, we de-
veloped Mobile Cloud Middleware (MCM) [6]. The middleware abstracts the
Web APIs of multiple cloud at different levels and provides a unique inter-
face that responds (JSON-based) according to the cloud services requested
(REST-based). MCM provides multiple internal components and adapters,
which manage the connection and communication between different clouds.
Since most of the cloud services require significant time to process the re-
quest, it is logical to have asynchronous invocation of the cloud service. Asyn-
chronicity is added to the MCM by using push notification services provided
by different mobile application platforms and by extending the capabilities of
a XMPP-based IM infrastructure [33].

Furthermore, MCM supports tasks composition into a multi-cloud opera-
tion. A multi-cloud operation consists of delegating mobile tasks to a diversity
of cloud services (e.g. from the infrastructure level, platform level, etc.) lo-
cated on different clouds (e.g. public, private, etc.) and orchestrating (e.g.
parallel, sequential, etc.) those transactions for achieving a common purpose.
Developing this kind of mobile cloud apps requires, from the cloud perspective,
the interoperability among cloud architectures. From the mobile perspective,
a considerable effort to manage the complexity of working with distributed
cloud services, a specialized knowledge to adapt each particular Web API to a
specific mobile platform, and an efficient approach that avoids the unnecessary
data transfer.

3.1 Design Goals and Architecture

MCM12,13 is introduced as an intermediary between the mobile phones and
the clouds for managing asynchronous delegation of mobile tasks to cloud re-
sources. MCM hides the complexity of dealing with multiple cloud providers
by abstracting the Web APIs from different clouds in a common operation level
so that the service functionality of the middleware can be added based on com-
bining different cloud services. Moreover, MCM enables the development of

12https://github.com/huberflores/MobileCloudMiddleware
13https://github.com/huberflores/InteroperableWebAPI
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Figure 3.1: Architecture of the Mobile Cloud Middleware

customized services based on service composition in order to decrease the num-
ber of mobile-to-cloud transactions needed in a mobile cloud application. The
architecture is shown in figure 3.1. When a mobile application tries to delegate
a mobile task to a cloud, it sends a request to the TP-Handler component of
the middleware, which can be based on several protocols like HTTP or XMPP.
The request is immediately followed by an acknowledgement from MCM (free-
ing the mobile) and it consists of a URL with the name of the server, the
service being requested, and the configuration parameters, which are applied
on the cloud resources for executing the task. For instance, http://ec2-x-x-
x-x.compute-1.amazonaws.com:8080/MCM/SensorAnalysis represents a pro-
cessing task that triggers a MapReduce activity recognition algorithm over a
set of sensor data (accelerometer and gyroscope) collected by the mobile in
order to discover reading patterns. The request also includes information re-
garding the cloud vendor, type of instance, region, image identifier, and the
rest of the parameters associated with that particular service. Notice that dif-
ferent services involve the utilization of different parameters within a request.
Once at the MCM, the request is then processed by the MCM-Manager for
creating the adapters that will be used in the transactional process with the
clouds. Figure 3.2 shows the interaction logic of the components of MCM.

When the request is forwarded to the MCM-Manager, it first creates a
session (in a transactional space) assigning a unique identifier for saving the
system configuration of the handset (OS, clouds’ credentials, etc.) and the
service configuration requested. The identifier is used for handling different
requests from multiple mobile devices and for sending the notification back
when the process running in the cloud is finished. The transactional space is
also used for exchanging data between the clouds (to avoid offloading the same
information from the mobile again and again) and manipulating data acquired
per each cloud transaction in a multi-cloud operation. Based on the request,
the service transaction is managed by the Interoperability-API-Engine or the
Composition-Engine (single or composite service invocation, respectively).
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In case of a single service invocation, the request is handled by the Interoperability-
API-Engine, which selects, at runtime, based on the request, the Web API
to utilize in a cloud transaction. The engine extends the interoperability
features to the Adapter-Servlets component, which contains the set of rou-
tines/functions that are used to invoke a specific cloud service. The MCM-
Manager encapsulates the API and the routine in an adapter for performing
the transaction and accessing the XaaS. Basically, an adapter is a runnable
abstract class that provides a generic behavior for a mobile task. We utilized
Gson14 for loading and serializing mobile tasks.

In contrast, if the request consists of a composite service invocation, the
Composition-Engine (explained in detail in section 3.2) interprets the ser-
vice schema and acquires the adapters needed for executing the services from
the Interoperability-API-Engine. The hybrid cloud property of an adapter is
achieved by using the Clojure 15 component that encapsulates several Web
APIs. Each adapter keeps the connection alive between MCM and the cloud
and monitors the status of each task running in the cloud. An adapter can
store data in the transactional space in order to be used by another adapter.

Once the single/composite service transaction is completed, the result is
sent back to the handset in a JSON format. MCM-Manager uses the asyn-
chronous notification feature to push the response back to the handset. Asyn-
chronicity is added to the MCM by implementing the Google Cloud Messag-
ing for Android (GCM), the Apple Push Notification Services (APNS), and
the Microsoft Push Notification Service (MPNS) protocols for Android, iOS
and Windows Phone 7 respectively. Alternatively, MCM also has support
for sending messages using the Mobile Cloud Messaging Framework based on
XMPP [33], which extends an ejabberd 16 infrastructure for delivering messages
to any smartphone that implements an XMPP mobile client. Asynchronous
notification support of MCM is explained in detail in subsection 3.1.1.

MCM is implemented in Java as a portable module based on Servlets 3.0
technology, which can easily be deployed on a Tomcat Server17 or any other
application server such as Jetty18 or GlassFish19. Web APIs are encapsulated
using Clojure, and thus are accessed by a common API. This encapsulation
guarantees updating deprecated Web APIs with newer versions, which are re-
leased constantly by the cloud vendor. Moreover, Clojure is also considered as

14https://code.google.com/p/google-gson/
15http://clojure.org/
16https://www.ejabberd.im/
17http://tomcat.apache.org/
18http://eclipse.org/jetty/
19https://glassfish.java.net/
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Figure 3.2: Interaction logic of the components of Mobile Cloud Middleware

its distributed nature introduces flexibility for scaling the applications horizon-
tally and thus augmenting the faul-tolerant properties of the overall system.
Moreover, Clojure also provides portability in the design. Thus, decreasing the
effort of migrating the whole architecture to more suitable telecommunication
programming languages.

Hybrid cloud services from Amazon EC2, S3, Google and Eucalyptus based
on private cloud are considered. Jets3t API enables the access to the storage
service of Amazon and Google from MCM. Jets3t is an open source API that
handles the maintenance for buckets and objects (creation, deletion, modi-
fication). A modified version of the API was implemented for handling the
storage service of Eucalyptus, Walrus. Latest version of jets3t also handles
synchronization of objects and folders from the cloud. Typica API and the
Amazon API are used to manage (turn on/off, attach volumes) the instances
from Eucalyptus and EC2 respectively. MCM also has support for SaaS from
Facebook, Google, AlchemyAPI.com20 and face.com21.

20http://www.alchemyapi.com/
21http://techcrunch.com/2012/06/18/facebook-scoops-up-face-com-for-100m-to-bolster-

its-facial-recognition-tech/
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MCM and the resource intensive tasks can easily be envisioned in several
scenarios [60, 61]. For instance, we have developed several mobile applications
that benefit from going cloud-aware. Zompopo [62] consists of the provision-
ing of context-aware services for processing data collected by the accelerometer
with the purpose of creating an intelligent calendar. CroudSTag [63] consists of
the formation of a social group by recognizing people in a set of pictures stored
in the cloud. Finally, Bakabs [64] is an application that helps in managing the
cloud resources themselves from the mobile, by applying linear programming
techniques for determining optimized cluster configurations for the provision-
ing of Web-based applications.

3.1.1 Asynchronous Support for Resource-intensive Tasks

Some mobile applications, whose functionality depends on the cloud, can pro-
vide a tolerant response time to the user. For example, searching for a location
in Google Maps or requesting for a preview of a picture in flickr. However,
when a mobile application needs to perform a task which is expected to be
time consuming, it cannot hang the mobile phone until the response arrives,
e.g. image processing with MapReduce. Mobile devices tend to get stuck if the
computation offloading requires long waiting, and in some cases the OS just
kills the task when it senses that it is low on memory (Android case), or just
does not allow performing another task at the same time. Delegating a mobile
operation to cloud is a complex process when the request is time consuming
and without a proper mechanism to handle the communication, this can cause
an overhead in the mobile resources.

As a solution to address these issues, MCM implements an asynchronous
notification feature for mobile devices that foster the de-coupling between the
client and server. Mobile applications can rely on push technologies (aka no-
tification services) for dealing with remote executions, and thus avoiding the
effect of polling caused by protocols such as HTTP. Push mechanisms are well
integrated within the mobile platform for low-energy consumption, and most
of the times, messages can reach the mobile in a short period of time after
they are pushed from the server. Messaging mechanisms are utilized by cloud
vendors to trigger events from the mobiles to synchronize data with their cloud
services, e.g. Gmail.

In the asynchronous process, when a mobile application sends a request to
the middleware, the handset immediately gets a response that the transaction
has been delegated to remote execution in the cloud, while the status of the
mobile application is sent to local background. Now the mobile device can
continue with other activities. Once the process is finished at the cloud, a
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notification about the result of the task is sent back to the mobile, so as to
reactivate the application running in the background, and thus the user can
continue the activity. The approach can also be used within a mobile device
to concurrently execute several tasks in multiple clouds.

MCM implements asynchronous support for Android, iOS and Windows
Phone platforms. However, these services are unreliable to be used in real-
time applications (the details are addressed in section 3.1.3) as the services
are public services and the mobile is competing with huge number of other
customers. To address this issue, we have designed a mobile cloud messaging
framework based on XMPP. The framework relies on Instant Messaging in-
frastructure to deliver notification to the smartphones. The main advantage
of the mechanism is that it can scale on public cloud based on usage demand in
order to keep high levels of quality of service. Moreover, the service is not tied
to any mobile platform, and thus it is interoperable between different devices.
The rest of the subsection describes each notification technology as follows.

1. Google Cloud Messaging —GCM is the enhanced notification service
provided by Google for sending asynchronous messages to Android de-
vices. It has been released as the replacement for the deprecated AC2DM
(Android Cloud to Device Messaging Framework) service and includes
new features such as unlimited message quota, decoupling of the mobile
device from a Google account for receiving message data (devices running
Android 4.0.4 or higher) and message throttling that enables to prevent
sending a flood of messages to a single handset, among others.

Basically, a mobile application that implements the GCM mechanism for
receiving messages, first, has to register itself against the GCM server for
acquiring a registration ID. Messages are sent to the mobile using this
identifier from the application server, which lasts till the mobile explicitly
unregisters itself, or until Google refreshes the GCM servers. An API
key is required for the application server in order to pass message data to
the GCM service. This key is generated by the developer using Google
APIs console and it is used as the sender ID of the message.

An application server sends a message to the mobile by sending the
registration ID, the API key and the payload to the GCM servers, where
the message is enqueued for delivery (with maximum of 5 attempts) or
stored in case the mobile is offline. GCM allows up to 100 messages
stored before discarding it. Once the device is active for receiving the
message, the system executes an Intent Broadcast for passing the raw
data to the specified Android application. GCM does not guarantee the
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delivery of a message and the sending order. Messages with payload can
contain up to 4K of data and are encapsulated in a JSON format.

2. Apple Push Notification Service —Similar to above mechanism, Ap-
ple devices running iOS 3.0 or newer can also receive asynchronous mes-
sages provided through APNS, the messages of which are sent through bi-
nary interface (gateway.push.apple.com:2195, gateway.sandbox.push.apple.com:2195)
that uses streaming TCP socket design. Forwarding messages to device
happens through constantly open IP connection. TLS (or SSL) certificate
(provisioned through iOS developer portal) is needed for creating secure
communication channel and for establishing trusted provider identity.
To avoid being considered a DoS (Denial of Service) attacker, using one
connection for multiple notifications rather than creating new connection
for each notification, is desired.

APNS has a feedback service that records failed notification delivery
attempts. This information should be checked regularly to avoid sending
messages to devices that do not have the targeted application installed
any more. For the same reason application should register itself at the
messaging server for notifications at each start by providing at least its
device token that it has received from APNS. Device token is a 32 byte
hexadecimal number that is unique for an application on a device and
does not change.

Messages sent to iOS devices via APNS consist of JSON payload with
maximum length of 256 bytes. Within message payload, values for keys
alert, sound and badge can be used to customize the message alert being
shown to user upon receiving it. Because the payload size is limited, it is
used to provide enough information for the application to make request
for additional details. When the device cannot receive notifications for
some time (e.g. due to being offline or switched off) and multiple notifi-
cations have been sent, only the last one is guaranteed to be delivered.

3. Microsoft Push Notification Service —MPNS is the push technol-
ogy provided by Microsoft for sending messages to the mobiles running
with the Windows Phone 7 platform. MPNS maps each device into a
set of URI channels that can be invoked via REST/POST with the pos-
sibility of creating up to 30 different channels for pushing data to the
applications (one application corresponds to one channel). Prior to use
of the MPNS mechanism, a phone has to request a push notification
URI from the Push Client service (located in the phone), which handles
the negotiation process with the MPNS server. A URI can be requested
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without authentication, however, in this case, a limit of 500 messages
per day is fixed. Once the mobile has obtained the URI, this is passed
to the application server so that the URI can be integrated within any
remote service that needs to notify data to a mobile application.

A message is sent from the application server to the mobile by performing
a request to the URI, which works as an interface between the applica-
tion server and the MPNS service. A request can be based on different
HTTP headers (depending on the mobile version), MessageID (to iden-
tify the response), NotificationClass (to set the sending notification time
interval), NotificationType (sets the type of the notification) and Call-
backURI (for authenticated channels). When the message is received by
the phone, a notification event is triggered. MPNS differentiates three
types of notifications, Toast Notifications, Tile Notifications and Raw
Notifications. A Toast Notification is used for raising alarms, passing
parameters to the applications, etc. A Tille Notification is an interactive
notification that enables to change the design properties of Tile elements
such as color, image background, etc. Finally, a Raw Notification is uti-
lized for passing information to a running application (if the application
is not running, the notification is discared). Similar to APNS or GCM,
MPNS does not guarantee the delivery of a message.

3.1.2 Generic Support for Asynchronous Delegation based
on XMPP

XMPP is a near real-time communication protocol that relies on Extensible
Markup Language (XML) and enables the exchange of structured data be-
tween network entities [65] (e.g. users, bots, etc.). XMPP uses decentralized
client-server model, where each user connects to the server that controls its own
domain. Thus, allowing the creation of an interoperable and federated archi-
tecture based on multiple authorities. Unlike other technologies (e.g. SIP) that
can be implemented or extended to push data to cloud, XMPP is preferable
as it enables to mantain a two-way asynchronous communication and fosters a
flexible, scalable and manageable infrastructure which can be adapted for any
mobile platform (interoperable).

3.1.2.1 Fundamentals and Extensions

XMPP uses globally unique addresses in order to route and to deliver mes-
sages. All entities are addressable by using unique identifiers called domain-
part and JID for the server and the client, respectively. A XMPP session is
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established after creating a TCP connection, XMPP exchanges input/output
XML streams for opening the channel that is going to be used during all the
communication process. XML stream is a container for exchanging XML stan-
zas between entities. The stream is started by sending a stream header tag
<stream:stream/> with appropriate attributes and namespace declarations.

After the stream header is accepted, the connection remains alive and the
server sends a first level child element <features/> tag, which contains actions
that the server is offering to the client for proceeding with the next step. Upon
successful actions’ execution, the XML stream must be restarted by sending
the stream header to the server once again, same sequential process is repeated.

A server should enable an entity to maintain multiple connected resources
simultaneously. Once the stream negotiation has finished, either party can
send XML stanzas. A XML stanza is the base of the XMPP protocol and it
can be defined as a first-level XML element whose name can be <message/>,
<presence/> and <iq/> (info query) and whose qualifying namespace may
vary from ’jabber:client’ or ’jabber:server’ depending on the entity.

A message stanza is used for pushing information to another entity us-
ing synchronous or asynchronous communication. Presence stanza is used for
sending presence notifications. For example, when a user logs into server,
the client sends a presence stanza to the server indicating that the user has
changed status. The server sends this status notification to every entity that is
online and is in the user’s buddy list. Info query stanza is a request-response
mechanism, (similar to the HTTP) that enables an entity to make a request
to and receive a response from another entity.

When the presence for the entity or resource has been set, the client is able
to exchange unbounded number of XML stanzas with other entities on the
network until the stream is closed. The stream closing is rather simple. If the
client wishes to log out from the server, it only needs to send the closing tag
of the stream (</stream:stream>). The closing entity must not immediately
close the TCP connection, but wait for the receiving entity to respond with
the same. This indicates that the server has halted any data transmission to
the entity and is in state to end the connection. Usually, the server closes the
connection and the client is not involved in the rest of the process.

In order to extend the capabilities of the IM infrastructure for sending
notification messages, while keeping intact the other IM features such as chat.
An attribute ’notification’ is added by the messaging framework so that the
notifications are routed to the XMPP notification manager of the mobile when
this is received by the PacketListener of the XMPP client.
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Figure 3.3: Mobile cloud messaging architecture

3.1.2.2 Implementation Details of the Messaging Framework

The messaging framework 22 is introduced as a component that follows a
client/server architecture, which can easily be integrated with any applica-
tion server for sending JSON-based notifications to any mobile platform that
implements an XMPP mobile client functionality23. Thus, message distribu-
tion can be performed to a variety of mobile applications developed in multiple
mobile technologies. The architecture is shown in Figure 3.3. The framework
establishes an asynchronous communication between the mobile and the cloud,
based on the JID of the user and it scales an instant messaging XMPP infras-
tructure for sending notifications to a large number of mobile devices.

From a server side perspective, the framework implements a message in-
terface that receives two parameters, the JID of the mobile client and the
text message in CSV format. When a notification message is created for be-
ing delivered, the message is passed to the Message-receiver for inspection.
The Message-receiver analyzes whether the mobile client can receive the mes-
sage by checking its status (e.g. online, away, etc.). Status data of the users
is retrieved from the Session-handler, which manages the information of the
complete roster. If the user’s status is other than offline, the message will
continue to the next step of the notification process. Otherwise, the message
is put in a temporal space (pending messages) and the JID account will be
monitored so that the process for that particular message is reactivated when
the user comes online again. The aim of the inspection is to guarantee that the
message is delivered to an active client and to reduce the queue of messages
by filtering those that can not be processed by an inactive mobile. In some
scenarios, the mobile client may go offline after the Message-receiver checks
the status of the client. In that case, the message is sent by the framework and
its delivery is delegated to a second mechanism, which is an inherent feature
of the XMPP server for handling offline messaging.

22https://github.com/huberflores/XMPPNotificationServer
23https://github.com/huberflores/XMPPNotificationClient
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Once the message has been verified for delivery, the message is passed to
the Message-packer which encapsulates the text into a JSON payload (using
json-simple library24. By default, theMessage-packer tries to divide the text in
attributes of the type name-value (similar to common notification services). In
the case of a packing exception (unexpected format), the Message-packer cre-
ates a JSON with a unique attribute containing as value the overall text. Mes-
sages are distributed in a round-robin fashion by the Message-packer, among
the available Message-dispatchers. A Message-dispatcher can be associated to
an automated JID that contains the complete roster and it is used for adding
the ’notification’ attribute to the XML streaming, which is sent as payload to
the XMPP cluster. Each Message-dispatcher is added, monitored and removed
dynamically by the Session-handler according to the data generated from the
Runtime-provisioner.

Runtime-provisioner is in charge of determining the number of Message-
dispatchers to be created by analyzing the queue length of the messages. This
number is determined by the capacity of a single standalone framework for han-
dling concurrent automated JIDs as shown in subsection 3.1.3. The framework
is developed in Clojure, which is a distributed language suitable for cloud de-
ployment and portability purposes. It uses the SmackAPI25 for implementing
the logic and behavior of the Message-dispatchers. Notification data is man-
aged by MySQL and H2 databases, for storing pending messages and queueing
messages, respectively. H2 uses an in-memory approach for handling the mes-
sage information. This approach was preferred as the life span of the messages
is short and to avoid unnecessary CPU load created by more sophisticated
DBMS.

From a client’s perspective, a mobile application is to be developed for re-
ceiving messages using the framework. It has to implement an XMPP client
that extends the native notification features of the mobile platform. For ex-
ample, in the case of Android, we have created an XMPP client that uses the
SmackAPI and the NotificationManager Class of Android. It implements a
PacketListener and PacketFilter that filters the received messages according
to its type. The NotificationManager Class is used to create the notification
event that informs the user about the message received. Once, the user selects
the notification icon, an Intent Broadcast is created for passing the raw data
to the application.

24https://code.google.com/p/json-simple/
25http://www.igniterealtime.org/projects/smack/
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3.1.3 Asynchronous Delegation Performance

Several experiments based on the delivery rate of the message were conducted
using the described mechanisms. The aim of the experiments is to determine
the latency between a provider submitting a request and the target device
receiving the notification (responsiveness). Mobile devices considered in the
experiments are a Samsung galaxy S2 i9100 with Android 2.3.3, 32GB of stor-
age, 1 GB of RAM and support for Wi-Fi 802.11 a/b/g/n; an iPhone 4 with
16GB of storage, 512 MB of RAM and support for 802.11b/g/n Wi-Fi (802.11n
2.4GHz only); and a Nokia Lumia 800 with Microsoft Windows Phone 7.5
Mango with 16 GB of storage, 512 MB of RAM and support for Wi-Fi 802.11
b/g/n. All the devices are connected via Wi-Fi to a network with an upload
rate of ≈ 1409 kbps and download rate of ≈ 3692 kbps, respectively.

Notification servers are configured to run on Amazon EC2 infrastructure
using small instances (a small instance has 1.8 GB of memory and up to 10
GB of storage). One EC2 computational instance is equivalent to a CPU
capacity of 2.66 GHz Intel R©XeonTMprocessor. Servers were running on 64 bit
Linux platforms (Ubuntu). XMPP mechanism (server and client) is developed
as described in subsection 3.1.2.2. GCM application server is written in Java
using Servlets technology version 3.0. It is deployed as war project in a Tomcat
server. It allows to register multiple devices simultaneously for receiving GCM
notifications and to send messages to a specific device. Each GCM message is
encapsulated in a JSON payload that includes an index number that identifies
the creation of the message and a sending timestamp taken from the server.
GCM client application is developed for Android 2.3.3. Once a notification
arrives, the payload is extracted from the message and then it is stored in a
SQLite database along with receiving client timestamp taken from the mobile.

In the case of APNS server, the gem library jpoz26 written in Ruby on
Rails is considered. Jpoz for APNS is a library that enables to send push
notifications from Ruby scripts. Scripts are executed in the server for sending
notifications to the mobile (with the same format as described for GCM) and
then are processed at the phone, once the notification is triggered. Messages
are stored in a SQLite database along with receiving client timestamp taken
from the device. MPNS application server is deployed in a Tomcat server by
implementing a Servlet that executes a POST request to the URI channel cre-
ated from the Windows Phone 7 device. The request contains the complete
headers + payload, where the payload consists of an index number that iden-
tifies the creation of the message and a sending timestamp taken from the
server (similar to GCM and APNS). Once a notification arrives, the Windows

26https://github.com/jpoz/APNS
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Phone client extracts the payload from the message and then it is stored in a
database along with receiving client timestamp taken from the handset.

3.1.4 Evaluation and Analysis

For all the described mechanisms, the aim of the experiments is to determine
the latency between a provider submitting a request and the target device
receiving the notification (responsiveness). Messages are fixed to a size of 254
bytes, which is the lowest common denominator of the allowed message sizes of
the considered approaches. Messages are formatted with similar characteristics
so that they can ensure a fair comparison that is not affected by transportation
factors such as data size, among others.

Messages are sent 1 per second for 15 seconds in sequence, then with a 30
minute sleep time, later followed by another set of 15 messages, repeating the
procedure for 8 hours (240 messages in total). The frequency of the messages
is set in this way in order to mitigate the possibility of being detected as a
potential attacker to the cloud vendor, e.g. Denial of Service, and to refresh
the notification service from a single requester and possible undelivered data.
Moreover, the duration of the experiments guarantee having an overview of the
service under different mobile loads, which may arise during different hours of
the day.

Even though push architectures are conceptually based on Open Mobile
Alliance (OMA) standard and follow a gateway server approach, notification
mechanisms are tailored for a specific mobile platform as black box services.
Thus, it is not possible to have a clear understanding about the architecture
implemented by each mechanism. As a result, we can just hypothesize the
causes of their performance, e.g. type of queue policy of the messages, number
of active servers deployed, dynamic allocation of servers based on load, etc.

Results are shown in Figure 3.4 for each mechanism. According to the data,
GCM is the most unreliable real-time mechanism that provides poor delivery
rates for notifications, with an average of ≈ 0.75 sec, median of ≈ 0.66 and
standard deviation (SD) of ≈ 0.69. From the GCM delivery rate diagram, it
can be observed that the quality of service started to decrease as the number of
messages increase across time. Consequently, messages tend to arrive without
a specific order. Some of the reasons that can cause that behavior are: the
utilization of multiple servers, where each server handles its own individual
queue; the unequal distribution of messages among the active servers sending
notification; high utilization of the notification system. Android is one of
the most popular platforms for developers. Thus, the notification service is
expected to handle heavy load of messages.
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In contrast, APNS is a more reliable mechanism that allows to send mes-
sages under a shorter delivery rate, with an average of ≈ 0.57 sec, median of
≈ 0.58 and SD of ≈ 0.16. In most of the cases, messages tend to arrive in
the same order as they were sent. This kind of behavior points out a possible
APNS overprovisioning (more servers than required for managing the load)
or optimal mechanisms to distribute the load of messages among the active
servers. In the case of MPNS, sent messages tend to reach the device without
a specific order (similar queues), but with a shorter inter-arrival time. Deliv-
ery time for MPNS has an average ≈ 1.07, median of ≈ 1.011 and SD of 0.57.
Finally, our proposed XMPP mechanism shows to share a similar reliability
as APNS for delivering messages, with an average delivery time of ≈ 0.6 sec,
median of ≈ 0.75 and SD of ≈ 0.10.
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Figure 3.4: XMPP delivery rate againts different mechanisms

Naturally, in our experiments we used a single notification server to measure
delivery rate of the messages. One single XMPP server is capable of handling
a high amount of users. To verify the capacity that an XMPP server has to
work as a gateway broker, which handle multiple notification requests, multiple
tests were carried out. We deployed an XMPP cluster in Amazon using EC2
small instances running on 64 bit Linux platforms (Ubuntu). We increased
the number of active servers in the cluster in order to determine the amount
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Figure 3.5: Number of active devices that can receive notifications through a
XMPP cluster working as a notification service.

of devices that can receive notifications through the cluster. Different mobile
loads were simulated using Tsung, which is a benchmarking tool.

The results are shown in Figure 3.5. Basically, a single XMPP node can
handle ≈ 5200 users concurrently. Moreover, according to the results, it can
be observed that the cluster with one load balancer is able to grow up to 6
nodes before the load balancer started to become a bottleneck that refuses
more users to login. However, in order to increase the number of users, it may
be possible to replace the load balancer for a more powerful cloud instance
(e.g. m1.medium or m1.large).

3.2 Hybrid Cloud Service Composition of MCM

While delegating a mobile task to the cloud may enrich the mobile applica-
tions with sophisticated functionality and release the mobile resources of heavy
processing, frequent delegation rates (mobile-to-cloud transactions) may intro-
duce costly computational expenses for the handset. Therefore, approaches
that enable to avoid unnecessary communication overhead such as those based
on service composition must be encouraged. Service composition consists of
the integration and re-utilization of existent distributed services for building
more complex and thus more rich service structures. Most of these structures
are developed graphically as control or data flow based models. For instance,
YahooPipes is a composition tool based on the concept of Unix pipes. A pipe
depicts a data resource on the Web (e.g. RSS feeds etc.) that can be filtered,
sorted or translated. Several pipes can be joined together into a single result
for extracting information according to the needs of the user.

Service composition enriches a single service invocation by adding, execut-
ing, orchestrating, and joining multiple service requests (treating each service
as an individual task) in a common operation. In order to foster a flexible and
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scalable approach, to compose hybrid cloud services, and to bring the benefits
of service composition to the mobiles, MCM implemented a service composi-
tion mechanism that enables to automate the execution of a workflow structure
with a single mobile offloading. Moreover, tasks are composed using a declara-
tive approach, where the workflow is modeled graphically and deployed in the
middleware for execution by using an Eclipse plugin.

3.2.1 Hybrid Cloud Service Implementation

The MCM composition editor is developed as a plugin for the Indigo version
of Eclipse. Basically, after configuring the plugin with the remote location of
the MCM, it retrieves the list of services that are available at the middleware
for mobile delegation (e.g. sensor analysis, text extraction, etc.) so that each
service (cloud transaction) can be depicted graphically as a MCM delegatiOn
Component (MOC). The plugin is developed by combining the capabilities of
GEF27 (Graphical Editing Framework) and EMF28 (Eclipse Modeling Frame-
work). GEF is used for creating the graphical editor that consists of a palette
of tools (MOC, connector, and mouse pointer) and a blank frame in which
the MOC is dragged and dropped multiple times for building the work flow.
Each MOC provides standard inputs and standard outputs that represent the
receiving/sending of messages in JSON format that are used for the intercom-
munication of components. Thus, the combination of MOCs is tied to the
matching between inputs and outputs. Since an individual service is usually
triggered for execution by a REST request that responds with a JSON pay-
load, when passing parameters between MOCs, the JSON payload is analyzed
and all the necessary parameters are extracted from it for creating a request
that matches the input of the next MOC. This request is loaded into the MOC
using Gson so that it can be executed.

A MOC is drawn by extending the draw2d29 library (Node class) with a
label object. When the component is active on the frame (focus on), its prop-
erties view pops up so that the component can be customized. The properties
view consists of: 1) a description category that is used to specify the MCM
service which is selected from a list (previously retrieved) contained in a Com-
boBoxPropertyDescriptor; once the service is selected, the service name is set
in the label object with its respective URL value as attribute; 2) an inputs
category that describes the list of inputs of the service selected in (1), which

27http://www.eclipse.org/gef/
28http://www.eclipse.org/modeling/emf/
29http://www.eclipse.org/gef/
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basically represents the execution properties that depend on the Web API be-
ing utilized, along with the required data for executing the task at the cloud.
Input parameters may be dynamic or static. A dynamic input value is one
that is obtained from a connected MOC. In contrast, a static input value is
defined by the user as plain value (e.g. file path); 3) an outputs category that
describes the list of outputs of the service selected in (1), which represents the
results of the cloud transaction. Both, (2) and (3) also provide information
related to other MOC which may be connected to its inputs/outputs.

EMF is used for creating an XML-based representation of the work flow (se-
rialization of the model). This serialization consists of describing each MOC
and connection relations as data type and flow conditions, respectively, so
that they can be deployed and published at the middleware for execution
using the MCM-Composition engine. Notice that the XML description is uti-
lized mainly for validating the execution of the workflow and for checking
the dependecies prior to the execution of a MOC. In the XML description,
each data type is described by mapping its graphical representation into ob-
ject properties (e.g. height, weight, etc.) and input/output attributes (e.g.
bucket name, security group identifier, etc.). For instance, the MOC Start In-
stance by default establishes a height of 50px and width of 150px, it is invoked
by performing a request to the URL with value http://ec2-x-x-x-x.compute-
1.amazonaws.com:8080/MCM-/StartInstance and it requires as input param-
eters, an image id (e.g. ami-xxxxxxxx), a provider name (e.g. amazon), an
instance size (e.g. large, small, etc.), a region (e.g. us-east-1c) and a username,
in order to generate an Instance object of typica library as output. This In-
stance object is passed to another MOC (e.g. RunScript) as serialized dynamic
parameter along with the path of the file that is defined by the user as static
input.

Once the XML description of the composed service is deployed at the mid-
dleware, the MCM-Composition engine is in charge of performing three tasks
for executing the new composed service. These tasks consist of publishing,
converting and executing. The publishing task is performed once the file is de-
ployed. It consists of assigning a unique URL for invoking the service via the
TP Handler. The service is named according to the name of the file which is
deployed (if name already exists, service cannot be deployed). The converting
task is performed once the service has been requested. It consists of parsing
the XML file for getting the individual information of each MOC. This infor-
mation is passed to the Interoperability API engine for creating the adapters
(as described in subsection 3.1) and performing the cloud transaction. Notice
that in runtime a MOC may have one or more associated adapters. Finally,
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the executing task is in charge of mapping the entire file (from top to bottom)
and executing each service using the adapters created previously. The execu-
tion follows the structure of the workflow considering any parallel or sequential
tasks. When a service is executed, the task is monitored by the MCM from
start to end. Once the result of each task is obtained, a request is created with
it and is redirected to the next MOC.

3.2.2 Hybrid Mobile Cloud Application - Demo Scenario

To demonstrate the composition feature of MCM, a hybrid mobile cloud ap-
plication has been developed using MCM and its composition tools. We have
developed the application in Android platform due to its popularity in the mo-
bile market and unrestricted uses. However, the application could be developed
for iOS or Windows Phone 7. The application benefits from its multi-cloud
nature for performing a variety of cloud analyses, which are invoked by a sin-
gle transaction. The aim of the application is to figure out whether the user
likes the content of the Web pages that the user is reading on the mobile or
not, so that the text of the most interesting articles can be extracted along
with some keywords, which are obtained through machine learning analysis.
Whether the user likes a particular page is calculated based on approximat-
ing the angle at which the phone is held to a fixed threshold which is set by
obtaining stable accelerometer and gyroscope measurements. Later, from that
point, it is sensed whether the handset experiments show intense movement or
not. The information extracted from the analysis is stored in a Web document
on the cloud for being accessed later through a URL using the Web browser
of a mobile or a standalone computer.

Since most of the functionality of the mobile application is located on mul-
tiple clouds and is managed by the MCM, the client application running on
the mobile is lighter and simple to build. The application consists of an Edit-
Text for typing an URL and a WebView for displaying its content. Once
packed in an apk file, the application requires ≈ 512 Kb of storage on the
mobile. When the application is launched, a concurrent process is triggered
in the background. This process is used to store the information sensed by
the accelerometer and the gyroscope sensors along with the active URL of the
WebView, into a SQLite database. With each measurement written to the
database, one tuple of the form, <ti, [ xi, yi, zi], [ g1i, g2i, g3i], URL >is
stored. Where ti represents a timestamp measured in seconds, [ xi, yi, zi] rep-
resents the data of the three axes of the accelerometer measured at time ti and
[ g1i, g2i, g3i] is the data of the three directions of the gyroscope measured at
time ti.
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When the application is closed (goes to the background), an Async task is
executed on the OnPause method of the application. This task consists of a
unique offloading to the URL of the compose service published at MCM. This
offloading contains: 1) the data that will be used in the multi-cloud analysis (in
this case, the database file); 2) the execution properties that allow to config-
ure the cloud resources in runtime (bucket name, Amazon image id, instance
size, region, Amazon username, eucalyptus image id, eucalyptus username,
sensor analysis provider, text analysis provider, keyword analysis provider and
document name); 3) a GCM request for registering the mobile at Google no-
tification servers. The registration is mandatory for sending messages to the
mobile using MCM and it is required only once. On this state, the application
(activity) is also terminated so that the user can continue with other activi-
ties. However, the application will be re-activated via Broadcast Intent once a
message from the notification service arrives with the result of the composition
(URL of the document). The application uses MCM for invoking the services
from Amazon, Eucalyptus, Google and AlchemyAPI.com. The cloud services
are defined for composition in the Eclipse plugin as follows.

After adding a file with extension *.mcm in the Java perspective of Eclipse,
the composition tools of the plugin become enabled. The following services
implemented at MCM are considered for the composition; CreateBucket rep-
resents a service that makes use of the Web Amazon API for creating a bucket
in S3 and requires a bucket name as parameter. UploadFileToBucket uses
jetS3t to locate objects in a specific Amazon bucket and requires a bucket
name target. StartInstance, EndInstance and RunScript use typica for han-
dling computational instances in Amazon and Eucalyptus. Here, the infras-
tructure parameters are used (instance size, region, amazon username, amazon
image id, eucalyptus username, etc.). KeywordExtraction can be assumed as
a black box service for the text analysis that is available by using the Web
Alchemy API (text analysis provider). CreateDocument uses the gdata-docs
API for creating the document, whose name is passed as parameter. Finally,
GCMNotification represents the push notification service of Google.

Before creating the workflow of the application, some sub-composition is
needed first. The subcomposition process consists of creating the LinkExtrac-
tion and TextExtraction services. The LinkExtraction is an Amazon computa-
tional service that applies a MapReduce activity recognition algorithm over the
sensor data in order to understand how the user was holding the handset [66],
and thus extracting the more interesting URLs (explained in Appendix A).
LinkExtraction is created by connecting the MOCs StartInstance, RunScript
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Figure 3.6: Workflow executed by MCM and triggered by a single service
invocation

and EndInstance. Similarly, TextExtraction is a service running on Eucalyp-
tus that implements the BulletParser30 for extracting the text of a set of URLs
(Web pages). TextExtraction shares the same logic as LinkExtraction and is
created by connecting the MOCs StartInstance, RunScript and EndInstance.
However, notice that RunScript differs on both services as the property file
path varies.

The workflow is structured by connecting the mentioned MOCs. The logic
of the workflow is shown in Figure 3.6 and it considers the following. After
the database is offloaded to MCM, the middleware creates a bucket to locate
the file (CreateBucket) and the location of the file (URL) is passed to the
LinkExtraction service to obtain a list of URLs. Later, the list of URLs is
passed in parallel to the TextExtraction and KeywordExtraction service. Once
these services are finished and MCM obtains their results, MCM connects to
Google docs to create a document with that information. Finally, MCM sends
a message via GCM to the mobile device. The message contains the URL of
the document which can be viewed in the browser of the mobile.

On the basis of the functional prototype of the mobile cloud application
presented, we can derive that it is possible to handle process intensive hy-
brid cloud services from the smartphones via the MCM. Figure 3.7 shows the
sequence of activities that are performed during the execution of the applica-
tion. Here, the total application duration i.e. the total mobile cloud service
delegation time for handling a multi-cloud operation asynchronously, is:

Tmcsa
∼= Ttr + Tm + ∆Tm +

n∑
i=1

(Ttei + Tci) + Tpn (3.1)

30http://code.google.com/p/lightcrawler/
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Figure 3.7: Timestamps of the application scenario

Where, Ttr is the transmission time taken across the radio link for the invo-
cation between the mobile phone and the MCM. The value includes the time
taken to transmit the request to the cloud and the time taken to send the
response back to the mobile. Apart from these values, several parameters also
affect the transmission delays like the Transmission Control Protocol (TCP)
packet loss, TCP acknowledgements, TCP congestion control etc. So a true
estimate of the transmission delays is not always possible. Alternatively, one
can take the values several times and can consider the mean values for the
analysis. Tm represents the latency of receiving a request for delegation and
sending a response to the mobile about its status. ∆Tm is the extra perfor-
mance time added by the components of MCM for processing the request. Tte
is the transmission time across the Internet/Ethernet for the invocation be-
tween the middleware and the cloud. Tc is the time taken to process the actual
service at the cloud. ∼= is considered in the equation as there are also other
timestamps involved, like the client processing at the mobile phone. However,
these values will be quite small and cannot be calculated exactly. The sigma is
considered for the composite service case, which involves several mobile cloud
service invocations. However, in other cases, the access to multiple cloud ser-
vices may actually happen in parallel. In such a scenario, the total time taken
for handling the cloud services at MCM, TCloud, will be the maximum of the
time taken by any of the cloud services (Maxni=1(Ttei +Tci) ). Finally, Tpn rep-
resents the push notification time, which is the time taken to send the response
of the mobile cloud service to the device. With the introduction of support
for push notification services at the MCM, the mobile phone just sends the
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request and gets the acknowledgement back once the multi-cloud operation
is performed. However, in this case, the delays completely depend on exter-
nal sources like the latencies with GCM/APNS/MPNS frameworks and the
respective clouds [33].

To analyze the performance of the application, a 5 MB of sensor data was
stored in an Amazon bucket. Samsumg Galaxy S II (i9100) with Android
2.3.3, 32GB of storage, 1 GB of RAM, support for Wi-Fi 802.11 a/b/g/n was
considered. Wifi connection was used to connect the mobile to the middleware.
So, test cases were taken in a network with an upload rate of ≈ 1409 kbps and
download rate of ≈ 3692 kbps, respectively. However, as mentioned already,
estimating the true values of transmission capabilities achieved at a particular
instance of time is not trivial. To counter the problem, we have taken the time
stamps several times (5 times) across different parts of the day and the mean
values are considered for the analysis.

The timestamps of the mobile cloud service invocation of the complete sce-
nario is shown in Figure 3.8. The value of Ttr + ∆Tm is quite short (< 870
msec), which is acceptable from the user perspective. So, the user has the
capability to start more data intensive tasks right after the last one or go with
other general tasks, while the cloud services are being processed by the MCM.
The total time (workflow) taken for handling the cloud services at MCM, TCloud

(
∑n

i=1(Ttei + Tci) ), is also logical and higher as expected. Cloud processing
time also considers provisioning latency of computational resources. This la-
tency represents the time of submitting a request for launching a resource and
obtaining the resource in an active state. Figure 3.9 and Figure 3.10 show
the execution time for each service that participates in the mashup. Cloud
services created from scratch with IaaS were evaluated on different underly-
ing hardware. Based on the results, we can observe that the allocation of
cloud resources affects the execution time of a delegated mobile task, which
is configurable dynamically by the middleware. Finally, Tpn varies depending
on current traffic of the GCM service and has an average of ≈1.56 seconds.
This notification average is obtained specifically to GCM through an 8 hours
experiments. Refer to the analysis of performance of asynchronous delegation
described in subsection 3.1.3.

3.2.3 Hybrid Cloud Service Composition Analysis

In order to analyze how MCM service composition adds value to the multi-
cloud delegation process of a mobile cloud application, let us consider a similar
analysis as the one presented by [36]. In their work, they claimed that a
single offloading benefits the mobile resources if the mobile component, which
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is offloaded to the cloud, requires huge amounts of computational resources
to be processed and at the same time, the offloading process requires small
amounts of data to be sent in the communication. Otherwise, it is preferable
not to offload the mobile component and process it locally. We tried to apply
the same principle in a delegation model as the mobile cloud communication
is the one which introduces high overheads in the device [60]. In this context,
a mobile cloud application that uses hybrid cloud services; it has to handle
all the invocation logic locally, which is translated into multiple mobile cloud
transactions. Moreover, the handset may also be forced to use extra processing
power as each mobile task is delegated. This extra processing consists of
data manipulation on the results acquired per each cloud transaction. Data
manipulation may be needed for joining all the results collected from the cloud
services or simply for re-converting the data in a suitable format for triggering
the next service.

Due to the resource-intensive/time-consuming nature of the cloud services
and the multiple frameworks that enable performing parallel processing on the
cloud (e.g. Hadoop), for this analysis we do not consider that a cloud task can
be performed on the mobile resources if the above condition is not met. We
rather focus on how to decrease the number of mobile cloud communication
required for delegating mobile tasks to hybrid cloud resources. With these
assumptions in mind, the following example provides a simple analysis.

Suppose that Ew is the total amount of energy wasted by the mobile when
executing a mobile cloud application. n is the number of hybrid cloud services
in a mobile application (time to offload data). Let B be the bandwidth used in
the communication between the mobile and the cloud and D is the size of the
data in bytes that are exchanged. In each delegation, the mobile will consume
(in watts), Pc for the processing performed by the mobile when handling the
results of each cloud transaction, Ptr for transmitting and receiving data. For
this analysis, we consider that transmission and receiving power are the same.
However, depending on the approach for sending the result back to the mobile
(e.g. notification services, real-time protocols such as XMPP etc), both will
differ.

Conceptually, if the mobile cloud application is handled by the mobile
resources using any approach discussed in subsection 3.1, the total time of
energy consumed in the multi-cloud offloading process will be:

Ew
∼=

n∑
j=1

((Ptr ×
Dj

B
) + Pcj) (3.2)
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In contrast, when using MCM and its service composition mechanism, the
hybrid cloud service integration occurs at the middleware, and thus n becomes
equal to 1. Therefore, one data offloading is needed to trigger a bunch of
different cloud services.

Ew
∼= (Ptr ×

∑m
j=1(Dj)

B
) + Pc) (3.3)

Where
∑m

j=1(Dj) represents the data sent per each cloud service requested
(if any). Notice that in some cases, no data is sent as the output of one service
may be the triggered input of the next service. So in the equation 3.3, m
(m ≤ n) is the number of services that participate in the composite service
and require input from the mobile. The main purpose of the composition is to
alleviate the mobile cloud service invocation Tmcsa from unnecessary latency
in the communication and to decrease the transfer of data.

3.3 Scalability of MCM

While MCM was successful in handling a multi-cloud operation from a mobile
cloud application, the capabilities of MCM for handling heavy loads depend
on its deployment aspects in the cloud and the dynamic configuration of those
at runtime. Dynamic cloud reconfiguration mainly focuses on the distribution
of application components that alleviate the entire system, when it is facing a
certain condition (e.g. High CPU utilization, etc.), thus, increasing its capa-
bilities for managing concurrency.

To verify the scalability of the middleware, MCM is located in a pub-
lic cloud (Amazon EC2), in a cluster-based configuration that consists of a
front-end node (Load Balancer- LB) and multiple end-nodes (MCM servers).
Figure 3.11 shows the deployment scenario. Basically, the front-end node dis-
tributes the load between the back-end servers. Therefore, the LB requires a
powerful CPU to handle the heavy demand. HAProxy31 is considered as the
LB as it allows dynamic behavior to the architecture and new MCM servers
can be added while the system is running (hot reconfiguration). Back-end
servers can be considered as commodity servers which can be replaced without
affecting the overall performance of the cluster. Once, the scenario was set up,
different mobile loads were simulated using benchmarking tools for testing the
horizontal scalability properties of the middleware.

31http://haproxy.1wt.eu/
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Figure 3.11: Load test setup for the MCM

3.3.1 Scalability Analysis of the MCM

Load testing of MCMwas performed using Tsung32 (open source multi-protocol
load testing software). Tsung was deployed in a distributed cluster composed
of three nodes running on separated instances (one primary and two secondary
nodes). The primary node is in charge of executing the test plan and collecting
all the results of each secondary node, so that information can be combined
and analyzed into a single report using Tsung-plotter utility. The test plan is
structured by blocks and consists of three parts, the server/client configura-
tion part, in which the machines’ information is defined. The load part that
contains the information related with the mean inter-arrival time between new
clients and the phase duration. Here, the number of concurrent users is de-
fined. For instance, for generating a load of three hundred users in one second a
mean of 0.0033 was used (Tsung primary node divided the load in equal parts
among the available Tsung nodes). And finally, the session part, in which
the testing scenario is configured and which consists of describing the clients’
request (captured using Tsung-recorder).

A single client request consists of simulating the hybrid mobile cloud appli-
cation described in subsection 3.2. The launch/terminate time of an Amazon
instance is simulated by connecting to a large capacity running instance that
performs the sensor processing. This time is simulated as launching a high
number of instances that incurs in large utility costs (not feasible for a single
user). The time is the average calculated from a set of individual sample times
(launching/terminating) that were taken during the day for a small instance
size. This simulation does not affect the overall results, since the communica-
tion with the service is established and the transaction is performed over the
cloud resources. Same occurs with Alchemy.com service, which is constrained

32http://tsung.erlang-projects.org

78



3.3 Scalability of MCM

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20

S
u
c
c
e
ss

 r
a
te

 [
%

]

Number of worker nodes

500
1000
1500
2000

Figure 3.12: Success rate of concurrent requests over multiple server nodes

by a free request quota. This issue was solved by taking an estimation about
the time that it takes for the service to process a request. GCM and other
services did not present any problems. In the case of GCM, messages were
routed to a single device.

Load traffic was simulated by n concurrent threads, where n varied between
≈ 150 and 650 per Tsung node (TN), making 500 to 2000 concurrent requests
on the load balancer, thus, simulating a large number of concurrent users
connecting to the MCM. On the cloud front, a load balancer and up to 20
MCM worker nodes were set up. To show the scale on demand of the solution,
the number of server nodes was increased from 2 to 20. Initial amount of nodes
was 2 and 2 nodes were added each time the setup needed to scale. Servers
running on Amazon EC2 infrastructure were using EC2 m1.small instances.
A small instance had 1.8 GB of memory and up to 10 GB of storage. One
EC2 computational instance is equivalent to a CPU capacity of 2.66 GHz
Intel R©XeonTMprocessor (CPU capacity of an EC2 compute unit do change in
time). Servers were running on 64 bit Linux platforms (Ubuntu). Finally, the
load balancer was set up for using Round-robin scheduling, so the load could
be divided into equal portions among the worker nodes.

In the load test of the MCM, the aim of the experiment is to measure 1)
how the access policies of the framework are enhanced by scaling the infrastruc-
ture horizontally and 2) how the success rate of the requests depends on the
number of framework nodes depending on the number of concurrent requests.
A request is considered a success, if it gets a response back (i.e. transaction
completed) before the connection or response timeout occurs. Similarly, the
success rate indicates the number of requests from all performed requests that
have succeeded. The results of the experiments are shown in Figure 3.12. From
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the diagram it can be observed that the success rate follows a logistic function,
with the number of nodes. The performance of eight nodes drops to ≈ 75%
after receiving 1500 concurrent requests. However, 18 nodes can handle this
load with almost 100% success rate. It can also be seen that with current test
architecture adding more worker nodes does not show any visible improvement
in the performance after 18 nodes in contrast when the setup was composed
of 2, 4 and 6 nodes.

To sum it up, with current MCM implementation, pair nodes deployment
may handle around 100-150 concurrent requests with almost 100% success
rate. An addition of two nodes adds roughly the capacity of handling another
100 requests until the load grows up to ≈ 1800 concurrent requests, when the
load balancer itself becomes a bottleneck. Hence, adding more nodes does not
improve the performance as desired. The analysis also shows that the elasticity
of the cloud helps to achieve this required setup easily.

3.4 Summary

Mobile Cloud Computing (MCC) is arising as a prominent research area that
is seeking to bring the massive advantages of the cloud to the constrained
smartphones and to enhance the telecommunication infrastructures with self-
adaptive behavior for the provisioning of scalable mobile cloud services. Mo-
bile cloud applications [60] are considered as the next generation of mobile
applications, due to their promise of bonded cloud functionality that augment
processing capabilities on demand, power-aware decision mechanisms that al-
low to efficiently utilize the resources of the device, and their dynamic resource
allocation approaches that allow to program and utilize cloud services at dif-
ferent levels (SaaS, IaaS, PaaS). However, adapting the cloud paradigm for
mobile devices is still in its infancy and several issues are yet to be answered.
Some of the prominent questions are: how to decide from the smartphone, the
deployment aspects (e.g. type of instance) of a mobile task delegated to the
cloud? How to decrease the effort and complexity of developing a mobile ap-
plication that requires accessing distributed hybrid cloud architectures? How
to handle a multi-cloud operation without overloading the mobile resources?
How to keep the properties (e.g. memory use, application size etc.) of a mobile
cloud application similar to that of a native one?

To counter the problems of accessing multiple cloud services through Web
APIs and invoking a time consuming operation from a mobile app [6], we de-
velop MCM Framework. MCM fosters an MBaaS solution, where a middleware
abstracts the Web APIs of multiple clouds at different levels and implements
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3.4 Summary

a unique interface that responds (JSON-based) according to the cloud services
requested (REST-based). MCM provides multiple internal components and
adapters, which manage the connection and communication between different
clouds. Since most of the cloud services require significant time to process the
request, it is logical to have asynchronous invocation of the cloud service. Asyn-
chronicity is added to the MCM by using push notification services provided
by different mobile application platforms and by extending the capabilities of a
XMPP-based IM infrastructure [33]. Furthermore, MCM fosters a flexible and
scalable approach to create hybrid cloud mobile applications based on declar-
ative task composition. Task composition is considered for representing each
mobile task to be delegated as a MCM delegation component. A composed
task is developed graphically in an Eclipse plugin based on user driven speci-
fications and it is modelled as a data-flow structure, where each task depicts
a cloud service to be invoked. Once developed, a composed task is deployed
within the middleware for execution that is triggered by a single invocation
from the mobile. This means that data transmission is minimized in order
to decrease computational effort in the device for going cloud-aware. Finally,
a prototype of MCM is developed and several applications are demonstrated
in different domains. To verify the scalability of MCM, load tests are also
performed on the hybrid cloud resources. The detailed performance analysis
of the middleware framework shows that MCM improves the quality of service
for mobiles and helps in maintaining soft-real time responses for mobile cloud
applications.
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Chapter 4

Evidence-aware Mobile
Computational Offloading

As explained in Chapter 2, the effectiveness of a computational offloading is
determined by the ability of the system to infer where the execution of code
(local or remote) requires less processing effort to the mobile, so that by cor-
rectly deciding what, when, where and how to offload, the device obtains a
benefit [15]. Latest works offer partial solutions that ignore the majority of
these considerations in the inference process. Most of the proposals demon-
strate the utilization of code offloading in controlled environment by connecting
to low-latency nearby servers, e.g. lab setups, and inducing the code to be-
come resource intensive during runtime [25, 67]. As a result, in practice, in
most of the cases, computational offloading is counterproductive for the device.
Thus, the need to offload code or not is debatable [13, 36]. It is well known that
computational offloading techniques are mainly needed to support applications
that implement heavy routines oriented to computer graphics. Moreover, some
researchers have concluded that most power-hungry applications are the most
popular as their usage rate is higher in comparison with other applications.
Unfortunately, most of the popular applications are based on data synchro-
nization (e.g. Twitter, Facebook, Instagram, LINE, Whatsapp, etc.) [68, 69],
which are unsuitable for code offloading strategies. However, code offloading
will become critical as the mobile game revolution takes over the market and
the social applications evolve into graphical interfaces that augment the con-
text of the user in order to enrich his/her experience, e.g. augmented reality.

Code profiling is one of the most challenging problems in a computational
offloading system, as the code has a non-deterministic behavior during runtime,
which means that it is difficult to estimate the running cost of a piece of code
considered for offloading [70]. Moreover, computational offloading is influenced
by many other parameters of the system that come from multiple levels of
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granularity, e.g. type of device, communication latency, data size transferred,
processing capabilities of the surrogate, etc. These parameters represent the
context of the device. By evaluating these parameters, a decision process that
takes place at the mobile determines whether offloading a task is productive
or not. Thus, an offloaded task that is unfavorable for the device is the result
of a wrong decision process, which tends to get imprecise based on the scope
of observable parameters of the system that the process can consider into its
decision [14].

The vast resource allocation choices in the cloud ecosystem and the large
diversity of smartphones make the context very variable [14, 38], and thus it is
a complex task determining or adapting the right conditions of the system to
offload. However, we believe that computational offloading to cloud is possible
without a negative impact on the device. We believe that a richer context can
be expressed in terms of multiple dimensions, e.g. what, when, where, how,
etc. A dimension defines the properties that a mobile application must meet
in order to offload a task. For instance, a face recognition app installed in
device (which) offloads a task at code level (what) under conditions (when)
to a remote server of type (where) to be executed (how) in parallel. More-
over, dimensions can scale to consider other mobility parameters, e.g. user’s
location, which can facilitate the process of pre-caching apps functionality.

We claim that the instrumentation of apps alone is insufficient to adopt
computational offloading in the design of mobile systems that rely on the cloud.
Computational offloading in the wild can impose more computational effort
on the mobile rather than reduce processing load [13]. In contrast to existing
works, we overcome the limitations of computational offloading in practice
by analyzing how a particular smartphone app behaves in a community of
devices [14]. Computational crowdsourcing strategies are viable solutions to
understand potential problems in software applications with high accuracy
level, e.g. bugs, leaks, etc. The main advantage of relying on a community is to
capture the diversity of cases in which an applications works. Our fine-grained
framework at code level is inspired by the coarse-grained solution Carat [71],
which attempts to find out energy bugs and hogs in the mobile apps. Carat
analyzes big repositories of data that depict the runtime behavior of a mobile
app in order to find anomalies that can turn into customized recommendations
for preferable configurations, e.g. apps to kill, by which the mobile user can
apply to make the battery life of his/her device last longer.

By following similar principles as Carat, it is possible to determine the
conditions and configurations for offloading smartphone applications. For in-
stance, by applying the Carat method [71] over a subset of data (≈328,000
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apps), we can get an idea about what is a resource-intensive app. Based on
this data, which is collected in a real life deployment, we develop several case
studies to motivate the viability and applicability of our approach. The subset
contains for each app the expected % of energy drain. The Carat method
consists of determining the energy drain distribution of a particular app, and
then compares it with the average energy drain distribution of other apps run-
ning in the device. The key insight of the method is to determine the possible
overlap between application energy distributions in order to detect anomalies
in application energy usage.

By analyzing apps’ category and specific purpose, we develop four case
studies, which consist of face manipulation, games, puzzles and chess. Fig-
ure 4.1 shows the results of the case studies. For each case study, we extract a
group from the subset of apps, where each app in the group is different from
the rest. The four groups consist of about 550 face manipulation apps, about
7,805 game apps, about 717 puzzle apps, and about 166 chess apps. Each
group is compared with the average energy drain of the subset, which excludes
its energy drain. From the results, we can observe that around (a) 43.84%, (b)
44.56%, (c) 42.75% and (d) 33% of apps implement computational operations
that require higher energy drain than normal, which is a significant number
of apps. Consequently, computational offloading is required, e.g. customized
alarm, to overcome the extra overhead introduced by the apps when showing
resource-intensive behavior.

Generally speaking, higher granularity data is able to provide insights about
the right conditions of these apps to offload to cloud. However, beyond equip-
ping the apps with computational offloading, this requires to instrument the
mechanisms with the ability to record its own local/remote execution, so that
we can capture more specific details about what induces the code to become
resource-intensive and what is the runtime behavior of the code in the de-
vice/surrogate. Thus, it is reasonable that the characterization of the compu-
tational offloading process can be modeled through a community of devices,
so that by taking advantage of the huge amount of devices that connect to
cloud, it can be possible to foster a more effective offloading strategy for the
smartphones.

Implicit crowdsourcing that does not need incentives, but rather it’s ex-
trapolated from application usage can be used to collect history traces of the
computational offloading process across the entire system. Traces can be ana-
lyzed using cloud analysis features to extract the characterization. The purpose
of the characterization is to define the effect of a remote code execution in dif-
ferent conditions and configurations, where a condition depicts the interaction
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Figure 4.1: Smartphone apps that depict higher energy drain

aspects of the user with the mobile, e.g. available memory and CPU, input
variability, etc., and a configuration represents the state of the components of
the systems, e.g. bandwidth size, capacity of the cloud-surrogate, performance
metrics of the mobile/back-end, etc. In this manner, we can find out the most
accurate configurations (what to offload) for a specific application in a partic-
ular device based on multiple criteria, such as type of the surrogate (where to
offload) and conditions of the system (when to offload). Additionally, it can be
possible to determine offloading plans (how to offload) that enable the device
to schedule code offloading operations, e.g. computational parallelization of
code [72].

Furthermore, the characterization can also be utilized to identify reusable
results. A reusable result is a portion of code that is commonly offloaded by
multiple devices. These results can be cached in cloud to respond duplicated
offloading requests from other devices. Logically, this accelerates the offloading
process as the surrogate avoids the invocation time of the request. We envision
that as a part of the characterization process, pre-cached functionality from the
entire mobile application can be requested on demand as depicted in Figure 4.2.
In this manner, our cloud assistance approach delivers a system, where the
cloud is the expert and mobile devices ask the cloud for its expertise.
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4.1 Design Goals and Architecture

Figure 4.2: Characterization of the offloading process that considers the smart-
phones diversity and the vast cloud ecosystem

4.1 Design Goals and Architecture

EMCO handles two types of mobile communication with cloud, one syn-
chronous for code offloading, and the other asynchronous for injection of data
analytics via push notifications. Architecture is shown in Figure 4.3. EMCO
follows a model, where the source code of the apps reside in both the mo-
bile and server, but it releases the mobile from a fixed cloud counterpart as
implemented by other frameworks. Thus, EMCO encourages a scalable provi-
sioning style as a service, where EMCO is deployed in multiple interconnected
servers and responds on demand to computational requests from any available
server. EMCO provides a toolkit that facilitates the integration of the mobile
and cloud mechanisms in the development life cycle. The rest of the section
describes the toolkit and framework in detail.

4.1.1 Development Toolkit

Smartphone apps are instrumented with computational offloading mechanisms
through different methods. However, some of the counterproductive effects of
computational offloading in practice are caused by applying these methods,
e.g. code annotations. To counter this problem, EMCO provides a toolkit,
which consists in a GUI conversion tool that automates equipping the apps
with EMCO and preparing them for client/server deployment. The conver-
sion tool transforms all the methods that fulfil the requirements to offload to
cloud [18]. Apps are also equipped with mechanisms that record local/remote
execution of the methods into a SQLite database and upload that data to
cloud. The tool receives as input an Android project and produces as output
two projects, one for the mobile and the other one for the cloud. Each project
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Figure 4.3: Evidence-aware Mobile Code Offloading architecture

is defined with maven-android33, so that for each project an Android Appli-
cation Package (APK) file is built automatically. The tool also provides the
means for automatic deployment of the APK in the cloud.

4.1.2 Smartphone-side

The EMCO-Client is a lightweight mechanism running in the device that con-
sists of a set of profilers, a decision engine and an asynchronous mechanism
that receives data analytics from cloud. Client components are described as
follows:

• System profilers are the local monitors that in real time estimate the
value of the parameters, which influence the offloading process. Accord-
ing to Kumar et al. [36], code offloading is reasonable for the device, if
in the presence of low Round Trip Times (RTT), the data sent in the
communication channel is small, and requires huge amount of process-
ing. Thus, profilers are in charge of monitoring network bit rate and
data size to transmit. RTT is calculated using the channel of code of-
floading. Time samples are collected that depict the time that takes to
connect via Sockets. We limit the number of samples to 5 in order to

33http://code.google.com/p/maven-android-plugin/

87



4.1 Design Goals and Architecture

avoid a loop of no server found. Data size is calculated by determining
the length of the object stream in bytes. In the case of the code profiler,
it is powered by the cloud. We believe that the estimation about how
much computational effort is required by the device to execute a portion
of code in runtime is a complex task and the key reason that makes com-
putational offloading to produce a counterproductive effect. Thus, in our
system, computational effort is determined by the majority of the crowd,
which implies that history traces from the community that describes the
energy consumed to locally and remotely execute the code are analyzed
(explained further in this section). This analysis occurs at the cloud
considering the properties of each device. Notice that the remote case
is more variable than the local one as it depends on the computational
properties of the cloud server. The variations are caused by the time of
code execution in the server. Estimation of the energy is captured using
PowerTutor [73], which has been shown to provide lower estimation error
by other works [71]. Code profiling information is pushed from the cloud
into the code offload descriptor. Finally, the system profilers are imple-
mented as Android services for convenience. An application can bind to
the service in order to retrieve its information and multiple applications
can use a service.
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Snippet 1 Computational offloading descriptor in JSON
{

"mobileApplication": "Chess",
"deviceID": "i9300",
"what-to-offload": [

{
"candidates-methods": "MiniMax"

}
],
"when-to-offload": [

{
"Energy-consumed": "180J",
"Fuzzy-engine": [

{
"linguisticVariable" : "BANDWIDTH",

"linguisticTerms":[
{"id": "speed_low",
"functionType": "Trepezoidal",
"Min": "384kbps",
"Max": "512kbps",

},
[...]

}
]

}
],
"where-to-offload": [

{
"best-surrogates": "m2.4xlarge, m2.4xlarge",
"acceptable-surrogates": "m1.large, m1.xlarge",

}
],
"how-to-offload": [

{
"parallelization": 0,

}
],
"Other": [...]

}

• Code offload descriptor controls the data management —create, up-
date, delete—of the data analytics sent from the cloud for a particular
app. The data is stored into the app space and contains the character-
ization of the computational offloading process in JSON format. The
characterization defines the offloading process based on multiple dimen-
sions (Snippet 1). First, it specifies what to offload by indicating the
candidate methods to the code profiler. Second, it defines when to of-
fload the methods by establishing the informational thresholds that the
device must detect. Next, the characterization defines a list of surrogates,
which describes from the most convenient to the most acceptable server
in which the device can offload. Later, it defines an execution plan for
the code, e.g. parallelize the code in n processes. Finally, the characteri-
zation can define other dimensions that exploit code execution patterns,
which are found from the analysis of the community history of the app.
For instance, a dimension reusable can define that the result of a specific
method is pre-cached to the cloud as the request is found to be the same
in all the other cases from the community. A dimension user-location
can define preferable surrogates to offload based on user’s location, e.g.
low latency hot spots. Besides to provide more fine-grained details to

89



4.1 Design Goals and Architecture

offload, the descriptor introduces additional advantages as it allows the
decision engine to have a wide view of the system to evaluate the impact
of a remote execution. The descriptor is loaded during runtime using
GSON34 when the application starts or an Android notification Intent
occurs.

• Decision engine estimates whether it is productive or not to offload.
The engine loads the information defined in the code offload descriptor
to create a reasoner based on fuzzy logic. We implement a fuzzy logic
described in [21] as we realize that the computational load to create
the reasoner can be shared between the mobile and cloud. The cloud
discovers the data values to create the fuzzy sets, rules, and membership
functions, and the mobile just loads the information. Thus, the engine
is lighter for the device. Once the reasoner is created, in order to decide
whether to offload or not, the system profilers pass to the reasoner as
input the parameters of the context along with the information of the
code to execute.

• Evidence-cache in the client side, it is utilized to cache the result of
methods which are calculated by the cloud. The results are stored into
the cache in case a result is likely to be used again by the mobile app. In
this manner, an app avoids to make the same remote method invocation
twice or more.

4.1.3 Cloud-side

The EMCO-Server is deployed on top of our customized Dalvik-x8635. Dalvik
is the virtual machine of Android to execute dalvik bytecode. Dalvik-x86 is
built by downloading and compiling the source code of Android Open Source
Project (AOSP) over the instance to target a x86 server architecture, and
removing the Applications and Application Framework layers from the Android
software architecture as shown in Figure 4.4.

Unlike other frameworks that rely on the virtualization of the entire mobile
platform to execute the code remotely like in the case of Android-x86, we
think that such virtualization is unnecessary (waste of CPU resources) and
counterproductive (slows down performance). Proof of that relies on the fact
that for equipping a server with that execution environment, it is required to
have a lot of storage space available in the server. For instance, we needed
storage space >100 GB to install the software, which includes AOSP code

34http://code.google.com/p/google-gson/
35Released as public in Ireland region of Amazon EC2 as ami-c42fd9b3
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Figure 4.4: Low-level Dalvik-x86 compiler built from Android open source
project

and Android SDK, among others. Moreover, once the OS is running in the
server, the OS activates all its default features, e.g. Zygote, GUI Manager, etc.,
which are not necessary in the surrogate. As a result, the CPU utilization of
the surrogate increases. Thus, in our system, we opted to extract the Dalvik
compiler from the mobile platform, and deployed it straight over the underlying
physical resources. Dalvik-x86 implements an executable script wrapper to the
core of libraries that boot the compiler. The content of the script is shown in
Snippet 2. In this manner, we reduce the storage size required by the system.
Our Dalvik-x86 surrogate requires to have attached a volume size of 60 GB as
minimum. Moreover, it does not active any default processes from the OS. The
surrogate creates a dalvikvm process in the host machine per each offloading
request that needs to be handled. The main advantage of this approach is
that in the case an offloading request failed or gets stuck, it is possible to kill
that particular process without restarting or stopping the complete offloading
system.
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Snippet 2 Wrapper that boots the Dalvik machine in a x86 machine
#!/bin/sh

#This wrapper works with our Dalvik x86 image running in Amazon

#Please contact at huber AT ut DOT ee for granting access to the image

# base directory, at top of source tree; replace with absolute path

base=‘pwd‘

root=$base/out/host/linux-x86
export ANDROID_ROOT=$root

# configure bootclasspath

# some extra jars are required besides services.jar, core.jar, ext.jar and framework.jar
bootpath=$base/out/target/product/generic_x86/system/framework
export BOOTCLASSPATH=$bootpath/core.jar:$bootpath/core-junit.jar:$bootpath/bouncycastle.jar:
$bootpath/ext.jar:$bootpath/framework.jar:$bootpath/android.policy.jar:$bootpath/services.jar

export LD_LIBRARY_PATH=$bootpath/lib:$LD_LIBRARY_PATH

# this is where we create the dalvik-cache directory; make sure it exists

export ANDROID_DATA=/tmp/dalvik_$USER
mkdir -p $ANDROID_DATA/dalvik-cache

exec $root/bin/dalvikvm -Xbootclasspath:$BOOTCLASSPATH $@$

The wrapper provides an interface to push bytecode for execution as sys-
tem’s process in the host operating system (Figure 4.5). When the server
initiates, the available APK files are pushed into the Dalvik machine as a pro-
cess waiting for request. Each APK file can be instantiated multiple times
and listened in different ports. In this manner, when an offloading request
occurs, code is invoked by forwarding the request to any process listening at
the server. This means that the surrogate is released from the limitations im-
posed by the mobile operating system, such as to activate multiple instances
from the same application, and to execute multiple applications concurrently,
among others. The surrogate is stored as image in the cloud, and thus, the
underlying resources can change on demand to increase the throughput of the
system, which means that the server can increase the capabilities to handle
multiple Dalvik processes simultaneously (multiple users) or to speed up the
execution of code ( different quality of service). The components of the server
side run on top of the Dalvik-x86 and are described as follows:

• Code offload manager is responsible for handling the code offload
requests. When a request arrives, the manager reads the request, and
extracts an object package, which contains the information details about
the app and all the data to invoke the method, e.g. type of parameters,
value of parameters, etc. The manager uses the data to check in the
Evidence cache component if the method was invoked before by other
app of the community, so that there is an existent associated result. If
the result is available, then the manager will send it back to the handset.
This speeds up the offloading process as the remote execution time is
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Figure 4.5: Execution of code using Dalvik-x86

avoided. If the result is not available, then the manager identifies the
mobile app and its associated Dalvik processes in the server in which
the request can be forwarded. Once a process is selected, the connection
is forwarded to it, so that the CloudController of the APK file instance
can invoke the method via Java reflection. The result obtained is packed
and sent back to the mobile. Paralelly to this process, a trace is created
by recording the execution of the method, e.g. execution time, type of
server, CPU load, etc., and stored along with the data of the request and
its result. Finally, the trace is passed to the Evidence analyzer, where
the trace is analyzed with the rest of the traces from the community.

• Push profiler implements the cloud-based messaging component based
on GCM service. The details of GCM are already addressed in Chapter 3,
subsection 3.1.1. EMCO sends a notification as follows: EMCO server
is registered to GCM service using an API key obtained from Google
APIs console. Multiple servers can use the same key. A mobile applica-
tion subscribes to EMCO to receive notifications and thus it obtains a
sender ID. This ID is temporal and lasts until the application explicitly
unsubscribes or until Google refreshes the GCM service. EMCO sends
a message to the mobile by sending a push request to the GCM service.
The request consists of the API key, the sender ID, and the message
payload. Requests are enqueued for delivery (with maximum of 5 at-
tempts) or stored in case the mobile is offline. Once the message reaches
the device, the Android system executes a brodcast intent for passing the
raw data to the code offload descriptor.
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EMCO relies on push technologies to aggregate code offload descriptors
into the smartphone apps. Since each message sent through GCM is
limited to 1024 bytes, the number of messages to send in order to form a
descriptor depends on the descriptor length. Messages are sent to the mo-
bile based on different events. For instance, dynamic cloud allocation,
periodical trace analysis, location detection of the mobile, etc. Since
GCM is a public service used by huge amount of customers, it does not
guarantee the delivery of a message and is unreliable to be used in real-
time applications. To counter this problem, EMCO provides a generic
interface, which can be used to easily integrate other push technologies,
e.g. MQTT (Message Queue Telemetry Transport). We have also de-
veloped our own push server36 based on XMPP, which can overcome the
issues of proprietary push technologies [33].

• Auto-scale is the component that grants the framework the ability to
scale for multi-tenancy. While a cloud vendor provides the mechanisms
to scale SOA applications on demand, e.g. Amazon autoscale, it does not
provide the means to adapt such strategies to a computational offload-
ing system as the requirements to support code offloading are different.
The requirements of a code offloading system are based on the percep-
tion that the user has towards the response time of the app. The main
insight is that a request should increase or maintain certain quality of re-
sponsiveness when the system handles heavy offloading traffic, in other
words, multiple devices offloading to a single server. Thus, a code of-
floading request cannot be treated indifferently. The remote invocation
of a method has to be monitored under different system’s throughput to
determine the limits of the system not to exceed the maximum number
of invocations that can be handled simultaneously without losing quality
of service.

EMCO can be deployed in a hierarchical control and supervision schema
as shown in Figure 4.6, where an initial EMCO server acts as a parent
(aka master), and a monitor server collects performance metrics from
the available EMCO servers (based on collectD37). The parent uses the
performance metrics to create EMCO children (aka clones), which are
utilized to share the load of incoming mobile users. The clone can be-
come a second level parent if it reaches its service utilization limits.
Each EMCO server implements a performance-based policy that uses
the traces to determine the minimun CPU free that has to maintain in

36https://github.com/huberflores/XMPPNotificationServer
37http://collectd.org/
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Figure 4.6: EMCO support for multi-tenancy and horizontal scaling

order to invoke a particular method. When a server is destroyed, the
subscribed mobile devices are passed from the child to its parent. Each
parent collects performance metrics from the collectD server, and when
the parent reaches its service utilization limits (1) and cannot handle
more requests (2), the parent creates another child. In this process, the
list of subscribed devices is splitted between the parent and the child,
and a push notification message is sent to each device to update the re-
mote information of the surrogate (3). In this manner, code offloading
requests are balanced among the servers (4).

• Evidence-cache in the server side contains the pre-cached results of
method invocations that can be shared among the community. Since a
computational task that is offloaded to cloud is serializable, the Code
offload manager calculates per each request a MessageDigest key based
on SHA-1 checksum to uniquely identify each request. By clustering all
the traces using DBSCAN based on checksums, the Evidence analyzer
can find those generic computational tasks in the set of traces. Once
a computational task is detected as generic, the Evidence analyzer can
push it along with its checksum into the Evidence cache.

• Evidence analyzer is in charge of analyzing the evidence, which is
stored in terms of traces and extracting the dimensions to create the
code offload descriptor for a particular app. Traces contain contextual
information about the local and remote execution of the code at a par-
ticular point in time when the app is used. A trace consists of a list of
features: device model, app identifier, name of method executed, local
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execution time, RTT, type of server, remote execution time, etc. A lo-
cal trace differs from a remote trace as its remote features’ values are
assigned with null, e.g. “type-of-server = null“. Additionally, in the case
code is offloaded, a trace includes an additional parameter that shows
if the remote invocation of code has failed or succeeded. Following the
Carat principles [71], the goal of the analysis is to transform the evidence
into a set of rate distributions, which can be utilized to compare local
code execution with remote one. We compare distributions using as fea-
tures, response time and energy consumed. Other features can also be
included in order to refine accuracy. However, the main requirement for
feature comparison is that the feature can be found in the mobile and the
surrogate. For instance, the responsiveness of the app when executing
the method in the device is comparable with the responsiveness of the
app when executing the method in the surrogate.

Rate distributions are computed for each app, initially, traces are con-
verted into a set of samples. Let st = (c, p, f̂) denote a sample taken
at time t of code execution with details c, e.g. app id, method name,
which is processed at p, e.g. local or remote. The remaining features
are denoted collectively as a set f̂ of key-value pairs, e.g. “response-
time=2s“, “energy-consumed=180J“, etc. We sort the samples based on
t and splitted them into two groups, one for local and other remote.
For each group a rate distribution is created. In this process, for each
feature selected fs for comparison, consecutive pairs, e.g. (st1 , fs) and
(st2 , fs), are converted into a rate distribution u = (fs2−fs1)

(t2−t1)
, which later

is associated with the rest of features to create a pair R = (u, f̂).

Once the rate distributions are calculated for a feature, pairs found Rlocal

and Rremote are compared. Comparison consists of finding an overlap-
ping between the two distributions in order to remove those slices where
overlapping is found (Figure 4.7). Usually, Rlocal values are higher than
Rremote as local processing influences more effort to a feature. Thus,
an overlapping depicts when remote is counterproductive for the device.
Once the overlapping slices are removed from the samples, next rate dis-
tribution feature is computed as described previously over the new set
of samples. This means that features are applied one after the other in
a gradual refinement process, which aims to keep only those contextual
properties that are shown to be favorable to offload.

Finally, after obtaining the last feature comparison with no overlappings,
the dimensions of the code offload descriptor are created. We rely on the
distance d between distributions to determine the level of improvement
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Figure 4.7: Comparison of local and remote distributions

desired as shown in Figure 4.7. The key insight is that the higher the
value of |d|, the better the properties to achieve higher improvement.
Dimensions are created by organizing all the features f̂ of most frequent
d into groups. Each group is organized based on a component granularity
level, e.g. device (which), app (what), communication (when), server
(where), etc. EMCO does not suggest the best configuration for an app,
but the most common one, which means the one with higher frequency of
d. Additionally, EMCO also extracts various alternatives for surrogates
based on the levels of frequency of d.

The overall EMCO analysis is described in Algorithm 1 and consists of ≈
1500 LOC written in Scala. In order to avoid overloading the surrogate
with extra processing, the analysis is outsourced to the monitor server,
which collects performance metrics.

4.2 Evaluation and Validation

To evaluate our EMCO framework, we used the smartphones, the technical
specifications of which are detailed in Table 4.1. We located the server side of
our system in Amazon cloud (Ireland region / eu-west-1). As cloud servers, we
selected general purpose instances (m1.small, m1.medium, m1.large, m3.medium,
m3.large, m3.xlarge, m3.2xlarge) and an optimized memory instance (m2.4xlarge).
Additionally, we used a nearby-computer (Intel Core i3, 2.3GHz, 4 GB of mem-
ory) in a cloudlet fashion. To measure the energy consumed by the mobile in
our offloading experiments, we relied on the Monsoon appliance, namely Mo-
bile Device Power Monitor.

Two different kind of experiments were conducted, oriented to measure how
our framework enhances mobile application performance, energy saving of the
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Algorithm 1 Evidence analysis
Require: : path to the traces
1: for each app in traces do
2: Create samples.
3: Specify features to compare
4: <fs>
5: for each feature in fs do
6: Compute rate distribution using samples.
7: <Rlocal, Rremote>
8: Compare Rlocal with Rremote

9: Remove slices that overlap
10: Update samples
11: end for
12: Calculate d using filtered samples.
13: Create code offload descriptor
14: EMCO policy creates the descriptor based on higher frequency of

d
15: Push descriptor to subscribed smartphone app
16: end for

device, and multi-tenancy provisioning. As use case in the experiments, we
developed a chess game38 with an artificial intelligence agent that challenges
the mobile user based on multiple levels of difficulty. The game implements
a minimax algorithm that enumerates all the possible moves to get the best
moves that both the user and agent can perform in next n steps, wherein n
can be configured. The algorithm determines the most effective move to be
done by the agent in order to counter the users’ move at playtime. We proceed
to describe the experiments along with the findings as follows.

4.2.1 Mobile Performance and Energy Saving

Setup and methodology: The goal of this experiment is to demonstrate the
gains in responsiveness that are obtained by using EMCO in comparison with
other offloading architectures. We conducted the experiments in real scenarios
and avoided the use of controlled configurations that lead to expected results.
Since EMCO encourages an offloading strategy at method level, to have a fair
comparison, we developed a code offloading framework based on Java anno-
tations39, which is similar to MAUI or ThinkAir. Firstly, the chess game was
configured to offload with the annotation framework. The minimax algorithm
was annotated as offloading candidate as it contains the most intensive pro-
cessing task of the game. The server side used an Amazon cloud instance of

38https://github.com/huberflores/CodeOffloadingChess
39https://github.com/huberflores/CodeOffloadingAnnotations

98



4.2 Evaluation and Validation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30  35

R
es

p
o
n
se

 t
im

e 
[i

n
 s

ec
o
n
d
s]

Task execution

Local (i9300)
Local (i9250)

m3.medium
m3.large

m3.xlarge
m3.2xlarge
m2.4xlarge

Figure 4.8: Average response time of the chess game application using different
servers

type m1.medium. This particular kind of server was selected as it is extensively
used in the evaluation of other offloading frameworks [13, 38].

Secondly, the chess game is configured to offload using EMCO. Since the
framework is potentiated by crowdsourcing, it was necessary to collect of-
floading traces from the chess game. As a result, the server side consists
of five Amazon instances running the EMCO server (m3.medium, m3.large,
m3.xlarge, m3.2xlarge and m2.4xlarge). Cloud assistance is potentiated by
traces collected from playing the chess game 240 times, which means that the
game was played 48 times per server. The game was played with a configu-
ration n=4 as in that particular configuration the game becomes more of a
challenge for the mobile user. Moreover, the need to offload to cloud is more
evident.
Experimental results: We believe that increasing responsiveness is not an
additional benefit of cloud offloading, but it is a mandatory requirement, which
in the worst case should be fulfilled by maintaining the mobile application with
similar response time as the one achieved by its local execution counterpart.
Figure 4.8 shows the average response time during playtime (from 48 games per
server) that our chess application obtains by offloading to cloud using different
servers. The figure also shows the average response time of running the ap-
plication in the mobile (i9300). From the results, two important observations
can be done: first, offloading is associated with multiple levels of enhancement
for the mobile; and second, the device nor the architecture is aware of the
right matching to bind the mobile and cloud resources. Moreover, we can also
observe that code is offloaded to cloud when it should not be offloaded.

To have a clear understanding about the different acceleration rates that
can be achieved by using different servers, we used a static request of the
minimax algorithm. Figure 4.9 shows the results. The input of the algorithm
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Figure 4.9: Acceleration rates of a minimax algorithm in multiple cases of
execution (local, remote and pre-cached)

Units, device, and mobile platform CPU RAM (MB)
1, Samsung Galaxy S3, Android Quad-core 1.4 GHz 1024
1, Google Nexus, Android Dual-core 1.2 GHz 1024

Table 4.1: Technical specification of the mobiles to evaluate EMCO

was fixed to a specific state of the chessboard. In that particular state, the
execution of the algorithm in the local resources of the mobile is ≈ 16 seconds.
Despite saving energy, our experiments reveal that servers such as m1.medium
and m1.large are not suitable as surrogates, as they slow down the performance
of high capabilities smartphones. This is a critical issue that compromises
user’s satisfaction. We can also observe from the diagram that a response
time higher than offloading to nearby servers can be achieved by relying on
higher capabilities servers such as m3.2xlarge and m2.xlarge. This suggests
that while the latency in communication cannot be controlled, the total time
of the invocation can decrease by adjusting the tradeoff between utilization
price and computational capabilities of the server.

Naturally, the utilization of powerful capability servers is associated with
an expensive cost. Thus, we consider most of the offloading proposals in the
field as infeasible in practice as they foster a highly coupled architecture (one
mobile, one server), which represents to the mobile user, paying for active
resources in the cloud that are utilized at minimum. Certainly, a server can be
paused and resumed in the cloud on demand, but the addition of these features
within the architecture has a direct impact on the mobile applications, for
example additional time to resume the server can decrease responsiveness in the
mobile, the entire architecture has to be reconfigured when a server is resumed,
specialized Web APIs need to be implemented in the mobile, which in most of
the cases cannot be deployed due to limitations of the mobile platform [10].
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To address this problem our proposed framework provides two solutions.
One the use of reusable results (pre-cached functionality) and the other the
optimization of the surrogate to handle multiple users. This last point is ex-
plained in detail in the scalability subsection. Regarding the first solution, as
explained before, a reusable result is identified in the analysis of the commu-
nity traces, and it is associated to a request that is commonly requested by
the crowd. The result of that request is stored at the cloud, and it is used
to respond duplicated offloading requests. The percentage in which the re-
sponse time is enhanced with reusable results is inversely proportional with
the time that it takes to execute the code. In other words, the longer the pro-
cessing, the less time required to answer the request. Figure 4.9 compares the
response time of a request from the chess game, which is processed remotely
and pre-cached in the cloud. Since the processing time of the code invoca-
tion is avoided, the offloading request is accelerated beyond normal execution.
Arguably, the offloading result could be stored temporally in the cache of the
device. However, the limited space of the cache in the device is unsuitable
for a long term re-use. Clearly, the cache can be increased, but a cache that
is too large can cause out of memory exceptions and leave the mobile appli-
cation with little memory to work. In order to mitigate the cost of running
continuously higher capability servers, after pre-cache results are stored, those
can be transfered to lower capability servers to respond duplicated offloading
requests, for instance, pre-cached results processed in m3.2xlarge can be trans-
fered to m1.small, so that m1.small can respond at similar rates of m3.2xlarge.
We conduct multiple experiments to determine the response time of a reusable
result using different instances types. Figure 4.10 shows the results. We can
observe that the response time of a reusable result remains almost the same
when using different instances types from remote cloud. We can also observe
that by using pre-cached functionality in cloudlets, the response time of the
offloading request obtains an extra acceleration.

Regarding mobile application performance, cloud assistance is potentiated
by traces collected from 240 executions of the chess game. Once it’s available,
we proceed to compared EMCO and the annotation framework. Figure 4.11
shows the results of offloading to m3.medium from the chess application dur-
ing a single game using EMCO and the annotation framework. Clearly, we
can see that EMCO uses the information from the characterization process to
determine the best mobile cloud matching. Additionally, EMCO accelerates
the offloading process by pre-caching mobile application functionality. In the
diagram, requests 10, 15 and 19 used the pre-caching mechanism. Finally, we
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Figure 4.10: Response time of pre-cache results in different instances types
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Figure 4.13: EMCO ability for multi-tenancy

demonstrate the gains in energy obtained by using EMCO. Figure 4.12 com-
pares the energy wasted by the mobile when using EMCO and the annotation
framework. EMCO shows to be more effective to save energy for the devices
as it saves three times more energy in comparison with traditional offloading
architectures. EMCO decision engine also shows to be lighter in comparison
with other mechanisms like the one used by MAUI. We compare MAUI linear
programming (LP) mechanism with our decision engine using the same amount
of parameters, the results show that EMCO consumes ≈ 12% less energy. The
processing steps required to take a decision using LP depends on the number
of parameters introduced in the engine.

4.2.2 Scalability of the Framework

Setup and methodology: In this experiment, we show how the cloud-based
surrogate scales to face heavy loads of incoming requests. It is important
to mention that most of the offloading frameworks are unable to scale for
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multi-tenancy, and those that claim to provide scalable features ignore key
cloud aspects, such as horizontal/vertical scaling, load balancing, handling
concurrent users, etc. The ability of EMCO to scale on demand provides
insights about the inquiry concerned to what will happen in a scenario that
involves a large scale of devices offloading to cloud.

To generate different loads of users, which are concurrently offloading to
cloud, we developed an offloading simulator40 that based on an input parameter
n creates n concurrent threads (each thread depicts a user) that offload a mini-
max algorithm to cloud. We benchmark all the types of surrogates described at
the beginning of the section using the same fixed input used in Figure 4.9. We
left out the servers in which with a single request, the response time degraded
in comparison with local execution (m1.small, m1.medium, m1.large).

Additionally, we analyzed our load balancing mechanism based on push no-
tifications. Since our push mechanism is a key component in our framework,
we conduct an experiment to measure its delivery rate. The aim of the exper-
iments is to determine the latency between submitting a request for sending
a message and the target device receiving the message. The message used in
the notification was fixed to a size of 254 bytes, which is the minimum amount
of data required to reconfigure the surrogate specified in the descriptor of the
device. Messages are sent 1 per second for 15 seconds in sequence, then with a
30 minute sleep time, later followed by another set of 15 messages, repeating
the procedure for 8 hours (240 messages in total). The frequency of the mes-
sages is set in this way, in order to mitigate the possibility of being detected as
a potential attacker to the cloud vendor (e.g. Denial of Service) and to refresh
the notification service from a single requester and possible undelivered data.
Moreover, the duration of the experiments guarantee to have an overview of
the service under different mobile loads, which may arise during different hours
of the day.
Experimental results: The capabilities of a system for handling multi-
tenancy are crucial in an environment that follows a utility model. EMCO
is built to exploit the distributed and vast variability of the cloud ecosystem.
EMCO handles an offloading request in an available dalvik process, which is
started as listener when the server is activated. Dalvik processes are listening
at the server to avoid the time that takes to push an apk file into the dalvik
machine, which is in average ≈ 100 milliseconds. Figure 4.13 shows the num-
ber of concurrent users that a single instance from different types can handle.
From the figure, we can observe that requests can be handled simultaneously,
and the number of concurrent requests is related with the available resources

40https://github.com/huberflores/BenchmarkingAndroidx86
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of the server. The response time of a single request augments as the load
in the server increases. Four different surrogates (nearby-server, m3.xlarge,
m3.2xlarge, m2.4xlarge) can handle up to 20 concurrently, below the average
response time required by the mobile to execute the code once. The rest of
the servers in the testbed (m3.medium, m3.large) can also handle the same
amount of users, but just half of them can be handled under the requirements
of acceleration and energy saving.

To achieve horizontal scaling, as any other cloud application, a load bal-
ancer is required. EMCO uses a notification server as load balancer. The
notifications allow the mobile to reconfigure the surrogate, in which is sub-
scribed. Notice that the response time depends on the protocol in which the
mechanism works and the availability of the server at the cloud provider [33].
Refer to performance of notification services in Chapter 3. Interestingly, the
load balancer shows to be more effective to distribute the incoming traffic
among the available EMCO servers as the load balancer does not become a
bottleneck when the servers are added dynamically. The reason is the hierar-
chical schema that does not rely on a unique server to distribute the load of
incoming requests that stress out the entire system, instead, each EMCO relies
on a collectD server to measure its own performance metrics. Based on the
CPU load, each EMCO assumes the role of parent to create or destroy a child.
When a child is created, a portion of the devices subscribed in the parent are
transfered to the child, so that the devices are subscribed to the new server. In
contrast, when a clone is destroyed, the subscribed devices are transfered back
to the parent, and then the child is removed. In both cases, the devices are
re-configured by sending a message via push notification. Removing a server
is faster than adding a new one as configuration time to create a new server
is higher. It takes in average one minute to have a working child available to
offload. The time includes the allocation time of the server in the cloud, which
is ≈ 40 seconds in Amazon, the transfer time of the data (subscribed devices),
and the delivery time of the notification. Finally, it is important to mention
that the reason of having an extra server with collectD (aka monitor) is due
to the CPU load of server that measures the performance metrics increases
in average 30% when the data is collected. Thus, measuring performance is
delegated from the parent to the monitor, so that the parent just takes the
decision based on the data gathered by the monitor.
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4.3 Summary

The potential of computational offloading has contributed towards the flurry
of recent research activity known as mobile cloud computing. While computa-
tional offloading has been widely considered for saving energy and increasing
responsiveness of smartphones, the technique still faces many issues pertain-
ing to real-life usage. This thesis overcomes the challenge to develop an ar-
chitecture that potentiates the sustainability of the approach in practice. We
design, build and validate a working implementation of a framework, namely
Evidence-aware Mobile Computational Offloading (EMCO), which introduces
the concept of cloud assistance in the architectures. EMCO relies on evidence
collected from a community of devices to characterize the execution of code
in all possible contexts. The aim of the characterization is to determine the
conditions and configurations for offloading smartphone applications. Addi-
tionally, the characterization is also utilized to identify reusable results, which
can accelerate the offloading process even further. The evaluation of our pro-
posed framework shows to be more effective as it allows the mobile device
to save three times more energy and accelerate the mobile applications up to
10x, and up to 30x using pre-cached functionality. Moreover, EMCO exploits
better multi-tenancy in as a service style.
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Chapter 5

Adaptive App
Quality-of-Experience as a Service

The proliferation of smartphone apps is on the rise, in particular games. Yet,
recent studies show that 80% of mobile apps in stores are installed, used for
some time, and then uninstalled from the device41. This suggests that the com-
petitive success of an app does not only depend on implementing interesting
functionality, but also in engaging the mobile user with high app Quality-of-
Experience (QoE) [55]. The QoE of an app is measured by combining user’s
satisfaction, expectation and perception about the app’s functionality with
technical and non-technical parameters that influence the runtime execution
of the app [74]. Technical parameters include network communication, pro-
cessing capabilities, allocated resources, etc., and non-technical parameters
include Quality-of-Service (QoS) provisioning, service level agreement, etc.

However, the expectation of the user towards facilitating the mobile device
with PC-like functionality is growing everyday. Mobile devices are constrained
by its processing capabilities and energetic resources. This limits the accept-
able perceptibility and interactivity of the mobile apps. As a consequence,
quality of the results presented to the user —fidelity [5]— can vary abruptly,
which compromises QoE.

QoE in client-server apps can be improved by tuning network parameters.
Decreasing high communication latency between a mobile and remote server is
one of the most challenging problems for a cellular operator or service provider
as reducing latency requires to tune the network to prioritize specific data
transfer, e.g. video streaming, voice over IP (VoIP), etc. Tuning involves to
estimate QoE metrics that depict the objective behavior of a smartphone app,
e.g. amount of video stalls in a streaming on demand app. Many parameters
can affect data transfer in the network, for example physical environment,

41http://goo.gl/K2t0n4
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complexity in the communication protocol, etc. Thus, measuring QoE metrics
is a difficult task due to the poor understanding about the relationship between
the network parameters and QoE metrics that influence the performance of an
app [47, 74].

Unlike client-server apps, increasing QoE of stand alone apps is complex
as it is limited by the mobile resources. However, as presented in Chapter 4,
mobile applications can be instrumented with computational offloading mecha-
nisms in order to augment the pool of computational resources [15]. Naturally,
the offloading process of smartphone apps that are instrumented with compu-
tational offloading mechanisms can be improved when the network is tuned
as any other client-server app that uses external service support. However,
in addition to this, apps that implement computational offloading can take
advantage of the vast utility features of the cloud to manage the accelera-
tion of code execution. In other words, the total time of the code invocation
in the cloud can be decreased by adjusting the tradeoff between utilization
price and computational capabilities of the surrogate server, which enables the
mobile application to enhance performance at multiple levels based on user’s
preference.

Besides the basic benefits provided from computational offloading, such as
saving energy of the device and improving response time of the smartphone
apps, in this chapter, we investigate how to use computational offloading to
adapt dynamically the fidelity of smartphone apps to meet QoE requirements
of the user. We envisioned that as part of an app released in a store, a counter-
part computational service in a cloud also is released by the same party that
developed the app to improve the QoE of the users that use the app.

5.1 Adapting App QoE: Design goals and Archi-
tecture

Despite the multiple variables that influence users QoE, previous works have
identified engagement as one of its key factors [48]. The basic idea is that the
more satisfied the user is with an app, the higher the frequency and the longer
the sessions in which an app is used. A session is formed by the events of
starting, using and closing an app. In our system, app QoE requirements are
determined based on the well known metrics, session length and abandonment,
which are extrapolated from Web QoE apps [75]. Figure 5.1 illustrates the
metrics. Session length represents the time that the users spends using an
app. The longer is the session, the more engaged the user is with an app and
vice versa. Abandonment depicts the progressive loss of interest in the user
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Figure 5.1: Session length and abandonment of an app

that is measured by the frequency of app usage, which is the number of sessions
of an app in a specific period of time.

In this context, when user’s disengagement with the app is detected, e.g.
session length or frequency usage diminishes, the app responsiveness is in-
creased gradually one step higher depending on its last execution. Since a
QoE client stores detail information about code execution of the app, e.g.
type of instance, time of execution, etc., it is possible to determine the pro-
cessing capabilities that are needed to accelerate the execution of code further
in comparison with previous cases. For instance, a request that was last time
executed by a m3.medium of 2.5 Ghz, it can accelerate its execution of code
if the request is processed by a higher capability instance like m3.large of 2.6
Ghz.

It is expected that accelerating the response time of the app will lead to
better QoE for the user, which in return will cause to increase the productive
life of the app in the market. Undoubtedly, the execution of an app cannot be
accelerated all the time as there is a limit for accelerating the code. Moreover,
code acceleration using cloud resources requires permanent network connectiv-
ity with low latency round trip times (RTT). Thus, once the user is engaged
with the app again, the QoE is gradually decreased. In the best case, app
QoE can be decreased as much as the one provided only by the processing
capabilities of the mobile.

5.1.1 System Overview

The proposed system extends our computational offloading framework pre-
sented in Chapter 4. Figure 5.2 shows the overview of the system, which
consists of a back-end, front-end and QoE client. Each part of the system is
described as follows:
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Figure 5.2: Overview of the system

1. Back-end — contains the surrogates, which are equipped with the same
runtime environment as the mobile platform, so that a surrogate can ex-
ecute the code offloaded from a smartphone app. Each surrogate is an
instance, which in cloud terms provisions a computational service. The
back-end delivers computational provisioning by a group of instances,
where each instance is from a certain type. Each instance type provides
different code acceleration that depends on the computational capabili-
ties of the instance. The group can scale up or down, which means that
instances can be added or dynamically removed on demand.

2. Front-end — is the entry point of the code offloading requests. A
front-end provides a load balancer that receives the workload of com-
putational offloading requests sent from the active users using an app.
The load balancer contains two components, the QoE-Accelerator and
the Dynamic-Resource-Allocator. The QoE-Accelerator is aware about
the number of instances in the back-end and the type of each instance.
It assigns to each type an acceleration class, which is used to differenti-
ate types of code acceleration. The QoE-accelerator uses the processor
speed of the instance as main variable to define code acceleration. Once
a request reaches the load balancer, the QoE-Accelerator forwards each
request to the right instance based on acceleration requirements in QoE
of each user. These requirements are defined by the mobile app and they
are sent along with the request. Finally, the Dynamic-Resource-Allocator
determines the amount of instances that minimize provisioning costs in
the cloud while fulfilling the QoE requirements of every user, which is
explained in detail in subsection 5.2.

3. QoE client — extends the instrumentation of code offloading with a
mechanism that enables the app to capture the time of code execution
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at method level into a database. Along with the time of code execution,
the client also stores where the code is executed, e.g. local or remote.
Additionally, if the execution of code is remote, the client also stores
the type of the instance that executed the method. The main idea is
that when an app offloads to the cloud, it can attach to the request
the stored information about the last execution of the method. An app
may require or not to increase QoE. In general, if the app does not
want to increase QoE, the information of last execution of the method
is used to guarantee that the request will be executed once again by
the same instance to achieve similar response time as last execution.
If the app requires to increase QoE, the information of last execution
turns into thresholds that need to be surpassed to achieve better app
responsiveness. Inspired by [26, 76], our QoE client uses linear regression
to estimate abandonment. Finally, many QoE clients offload to cloud as
a QoE workload.

5.2 Dynamic Computational Provisioning

Since the allocation of computational resources in the cloud has a provisioning
cost, it is important that the allocated resources are efficiently utilized to avoid
over provisioning that causes higher costs. At the same time, it has to ensure
that the allocated resources can cope with the service demand of the active
users using the system. As a result, we develop an approach, the objective
of which is to determine the effective amount of resources to be allocated
depending on a QoE workload, while minimizing a provisioning budget.

The dynamic amount of allocated resources is estimated using Linear Pro-
gramming (LP) [77]. LP is a technique the aim of which is to determine the
optimal solution for a given problem. A LP model consists of a linear objec-
tive function that needs to be optimized and is subject to a set of constraints
expressed as equalities or inequalities. The constraints define a finite space
of solutions, known as feasible region, where the objective function can be
evaluated. A LP algorithm finds a point inside the feasible region where the
objective function is optimal, whether maximum or minimum, and still the
constraints are satisfied. The objective function and constraints are composed
by variables and parameters. The parameters are known values that are set
before the execution of the LP algorithm. The algorithm’s aim is to maximize
or minimize the objective function by assigning values to the variables of the
problem.
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Let t represents the type of an instance. The back-end of the system
consists of n instances. The parameters of the model also include:

- B, the maximum budget constraint.

- ct, cost of an instance of type t.

- At, class that defines the speed up in code execution that can be achieved
by using the instance of type t. Each instance type delivers an accelera-
tion based on processor speed.

- NAt, number of active instances of class At that are in the back-end.
Notice that the total number of instances n is equal to

∑k
i=1NAti, where

k is the number of acceleration classes.

- CAt, capacity of the instance of type t to handle code offloading requests
per minute.

- CC, number of instances that the cloud is capable to launch for an
account. Generally, private clouds are able to manage only a limited
number of instances at a time. Similarly, public clouds such Amazon
AWS can launch at most 20 CAt instances on demand, if more than 20
instances needs to be launched the customer has to fill a form requesting
the extra resources.

- W , the value of the current QoE workload in the system in requests per
minute. W can be expressed in terms of sub workloads WAt, which
represent the workload for a particular class At. Thus, W =

∑k
i=1WAti,

where k is the number of acceleration classes.

The variables correspond to the number of instances to be allocated.

- xt, the number of instances of type t to be allocated in the back-end.
Generally, front-end is provided by the cloud vendor as an entry point
for the cloud application and in some cases without a cost, e.g. Amazon
Autoscale42. We assume the front-end is provided without a cost.

The model tries to minimize the cost of having x number of instances of
type t running with a cost ct. The object function is defined as a sum across
all the instances types t ∈ T .

Min

n∑
i=1

xti ∗ cti (5.1)

Finally, the model comprises the following constraints:
42http://aws.amazon.com/autoscaling/
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- The workload constraint ∀ the acceleration classes At.

k∑
i=1

NAti ∗ CAti > WAti (5.2)

- Cloud’s on demand constraint:

n∑
i=1

xti < CC (5.3)

The workload constraints states that the sum of all the capacity CAt across
all the instances from NAt must be enough to satisfy the workload WAt of
a class At. We must remember that a mobile app offloads a task to cloud to
increase QoE, in terms of responsiveness. As a result, each offloading request
defines a goal in response time, which is the sum of the times for data trans-
fer and code execution. Data transfer time is fixed by network latency and
code execution depends on processing capabilities of the instance as explained
before. However, the code execution time or service time of the instance also
depends on the CPU utilization. If the CPU utilization is higher, the ser-
vice time of the request will also be higher [30]. CPU utilization increases as
the number of active users offloading to an instance also increase. Thus, the
capacity of an instance depends on its service time.

Unlike other types of requests that can be characterized [29], the service
time of a code offloading request can vary abruptly as the code has a non-
deterministic behavior. Thus, the capacity CAt is periodically estimated de-
pending on the number of successful requests that are provisioned by the in-
stance. A request is successful when the actual service time of the instance is
lower than or equal to the goal service time required by the app. By analyzing
the logs of the instance each previous hour, it is possible to determine the
amount of requests that were successfully processed by the instance. Based
on these observations, the capacity CAt is determined for the next hour, in
terms of requests per minute. Initially, when there is not log data to calculate
capacity, a CPU utilization threshold of 80% is used instead. Many works
have found this threshold to be the optimal for not over loading a cloud-based
system [78].

The budget constraint states that the sum of all the cost c across all the
instances types tmust be under the specified budget B. The cloud’s on demand
constraint states that the number of running instances of the type t must be
less than or equal to the allocation capacity CC of the cloud. In other words,
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the number of instances that need to be run must be under budget and not
exceed the cloud’s capacity, if any, and still satisfy the workload in the system.

5.3 Implementation of the System

This section describes the implementation details of each component of the
system. We developed our system based on Android. The rest of the section
describes the technical details of each component43.

5.3.1 Back-end

Each surrogate of the back-end is a customized Dalvik-x86. Dalvik is the
virtual machine of Android to execute dalvik bytecode. The implementation
and deployment of this component is already described in detail in Chapter 4.

5.3.2 Front-end

The front-end is an instance that distributes the incoming QoE workload
among the back-end surrogates. The front-end contains a back-end descriptor
in JSON format (Snippet 3), which contains per each server, the information
about where the apk files are located and the available ports for code offload-
ing. The descriptor is updated when a server is added or removed.

Snippet 3 Back-end descriptor in JSON format
{

"Chess_app": {
"Surrogate: 54.73.45.xxx": {

"ports": [
"6001",
"6002",
...
"600N"

],
"location": [

"/home/ubuntu/android-x86/"
]

}... others
},
"Nqueens_app": {

"Surrogate: 172.16.32.xxx": {
"ports": [

"5001",
...
"500N"

],
"location": [

"/home/ubuntu/dalvik-86/"
]

}... others
}

}

43https://github.com/huberflores/ScalingMobileCodeOffloading
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Figure 5.3: Overview of the dynamic allocation resources for computational
provisioning

Based on the QoE workload, the load balancer dynamically allocates the
necessary instances to handle the workload. Since cloud vendors charge the
cost of an instance per hour, e.g. Amazon, allocation of instances happen at
the end of each hour as shown in Figure 5.3. The load balancer executes Algo-
rithm 2 10 minutes before the end of each hour in order to determine next set of
instances. This amount of time is enough to execute the algorithm and apply
the new configuration settings. Once the new configuration is obtained for the
next hour, the new configuration settings is compared with the current one.
The goal is to find at least one instance in common, which won’t be terminated
during the transition and will continue provisioning the computational service
for the next hour as well. The aim of this is to avoid termination, launch and
configuration time in the system when in re-configured. Moreover, this also
ensures the availability of the service during the transition. In the case that
there are not instances in common between the new and current settings, then
the 10 minutes is an average time, which is enough to terminate the overall
configuration and start a new one. Our load balancer uses jclouds44 library to
manage the cloud infrastructure. The library has support for Amazon cloud
and many other cloud vendors such as Azure, Rackspace, etc. Finally, LP
model is develop using OptimJ45, which is a Java based modelling language
for solving optimization problems. OptimJ implements different LP solvers
like GLPK and lpsolve, which are open source.

5.3.3 QoE Client

We develop our system based on Android. Each app that uses our system is
instrumented with a code offloading mechanism that uses Java reflection [21],
which allows to capture the details of code invocation during runtime, e.g.

44https://jclouds.apache.org/
45www.ateji.com/optimj/
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Algorithm 2 Resource allocation of surrogates in the back-end
Require: : Provisioning time <t>, parameters of the LP model <parame-

ters>
1: if ((t + 10) = End of the provisioning cycle) then
2: Get log files from each surrogate in the back-end.
3: Calculate capacity of each instance type.
4: Calculate newConfiguration: new instances to be allocated.
5: newConfiguration = LPModel(parameters).
6: Get currentConfiguration: existent instances in the back-end.
7: Calculate reuseInstancesGroup = Compare new configuration settings

with current one.
8: for each newInstance in newConfiguration do
9: for each currentInstance in currentConfiguration do
10: if (newInstance equal to currentInstance) and newInstance is not

marked for reuse then
11: Add currentInstance to reuseInstancesGroup.
12: Mark currentInstance for reuse.
13: Continue.
14: end if
15: end for
16: end for
17: for each newInstance in newConfiguration do
18: if newInstance is found in reuseInstancesGroup then
19: Remove newInstance from reuseInstancesGroup
20: Continue.
21: else
22: Launch newInstance.
23: end if
24: end for
25: for each currentInstance in currentConfiguration do
26: if currentInstance is not marked for reuse then
27: Terminate currentInstance.
28: end if
29: end for
30: end if
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Units, device, and mobile platform CPU RAM (MB)
1, Samsung Galaxy S3, Android Quad-core 1.4 GHz 1024
1, Google Nexus, Android Dual-core 1.2 GHz 1024

Table 5.1: Technical specification of the mobiles to evaluate QoE adaptation

name of the method, parameters, etc. Our code offloading mechanism trans-
forms each method of the app into two new methods definitions, one local and
one remote. The QoE client wraps these methods to capture their execution
time, which is stored into a SQLite database. Execution details of the code
are encapsulated into a code offloading request. The request also contains the
requirements in QoE of the app, if any. At the front-end, the load balancer
reads the request and forwards it to the correspondent instance. At the sur-
rogate, the request is reconstructed based on its runtime details, so that code
can be executed. Once executed, the response is sent back to the mobile app,
which synchronizes the result with its execution flow.

To generate different loads of users that offload code to cloud, we developed
a simulator that based on an input parameter n creates n threads that offload
a specific portion of code defined by the developer, each thread depicts a
user. The simulator also is implemented using Java reflection. The simulator
receives as parameters, the inter arrival time that is the time between creating
one request and the next request, and the experimental time that depicts the
active time of the load of requests.

5.4 Evaluation and Analysis

To evaluate our system, we used the smartphones, the technical specifications
of which are detailed in Table 5.1. We located the server side in Amazon cloud
(Ireland region / eu-west-1). As cloud servers, we selected general purpose
instances (m1.small, m1.medium, m1.large, m3.-medium, m3.large, m3.xlarge,
m3.2xlarge) and an optimized memory instance (m2.4xlarge). We used these
instances as they can be launched on demand indefinitely. Other higher capa-
bilities instances, e.g. c3.8xlarge, require explicit request to the provider to be
launched multiple times by a single account. In this section, we describe the
experiments conducted, oriented to measure the performance, and scalability
of our system.

5.4.1 Performance

Setup and methodology: The goal of the experiment is to demonstrate how
app QoE can be adapted to multiple levels of response time based on cloud

117



5.4 Evaluation and Analysis

utility computing. We developed three different apps, which are instrumented
with a code offloading mechanism [15] and our QoE client. We assume in
the experiments that the smartphones have available network connectivity to
offload. Apps are described as follow.

Chess app — implements an artificial intelligence (AI) agent that challenges
the mobile user based on multiple levels of difficulty. The agent uses a minimax
algorithm that analyzes how the chess pieces are located on the board, so that
it can enumerate all the possible moves and determine the best move that the
agent can take to counter the last move of the user. The portion of code that
corresponds to the minimax logic is the one offloaded. This application is also
studied in detail in Chapter 4.

Backtracking app — overlaps a 3D model on the surface of the mobile
camera to augment the reality of the ambient. The app is equipped with
ten models in format 3ds, where the size s of each model is the range of
500KB<s<2000KB. Since each model requires significant amount of processing
to be loaded, each model is loaded individually as the user requires. The
portion of code that corresponds to the model loader is the one offloaded.

Mission game app — is a mobile game developed using AndEngine46. The
game consists of using a 2D character to defeat 2D enemies which appear
randomly to attack it. The game implements five stages. During playtime,
the game collects information about the number of enemies along with their
positions and life time, so that at the beginning of each stage, this information
can be used to improve the AI strategy of the game. The portion of code that
corresponds to design the strategy is the one offloaded.
Results, experiences and lessons learned: Our system introduces an ex-
tra front-end component in the architecture. First, we explore how this new
component influences the response time of a computational offloading request.
As a result, timestamps are taken across the system as the request is pro-
cessed in each of its components. Figure 5.4 models the response time Tresponse
of a computational request. The response time considers the time that takes
to connect from the mobile to the front-end Tm−f , the time that takes to be
routed from the front-end to a particular surrogate Tf−b, the execution time
of the code in the surrogate Tcloud, the times that takes to send the result
from the surrogate to the front-end Tb−f , and finally, the time that takes to
send the result back from the front-end to the mobile Tf−m. We assume that
Tm−f = Tf−m and Tf−b = Tb−f are equal as the same communication chan-
nel remains open both ways until the operation finishes. In this context, we

46http://www.andengine.org
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Figure 5.4: Timestamps taken across the system in each of its components
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Figure 5.5: Actual times to handle the request in each component

define T1 = Tm−f + Tf−m and T2 = Tf−b + Tb−f . Thus, the response time
Tresponse = T1 + T2 + Tcloud.

Figure 5.5 shows the timestamps taken across the system. We can observe
that the extra time introduced by the front-end is ≈ 150 milliseconds and the
total communication time T1 + T2 is less than a second. Naturally, higher
latency can influence the communication time to be higher and vice versa,
which impacts T1. T2 is less likely to change drastically as the latency depicts
the internal cloud communication, which is wired between servers in the same
private network. Finally, the diagram shows that Tcloud is the most consuming
operation that impacts the total response time. Fortunately, the total time of
the code invocation in the cloud can be decreased by adjusting the tradeoff
between utilization price and computational capabilities of the surrogate server
as depicted in Figure 5.6, which shows the execution of a minimax algorithm in
different instance types. The input of the algorithm is fixed to a specific state
of the chessboard. In that particular state, the execution of the algorithm in
the local resources of the mobile is ≈ 16 seconds for i9250 and ≈ 14 for i9300.
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Figure 5.6: Acceleration of code based on instance types.

Next, we proceed to compare the local execution of an app in the mobile
with all different cases that emerge from using different instance types as a
surrogate. Instances m1.small, m1.medium and m1.large are excluded from
this experiment because the response time of the app decreases in comparison
with local execution. Increasing responsiveness is not an additional benefit of
cloud offloading, but it is a mandatory requirement, which in the worst case
should be fulfilled by maintaining the mobile application with similar response
time as the one achieved by its local execution counterpart. Figures 4.8, 5.7
and 5.8 show the response time for chess, backtracking and mission game
respectively. In general, we can observe that the response time of an app
increases as the capabilities of the surrogate become higher. Naturally, the
amount of acceleration induced by using different surrogates depends on the
task itself. We can observe that while the chess app speeds up its execution
up to 14X times, the backtracking app just accelerates up to 3.5X and the
mission game app up to 2.5X.

However, these accelerations are enough to change the perception that the
user has towards the app. For instance, in the case of the chess app, the
response time is changed from total interaction disruption (>10 seconds) to
no disruption with noticeable delay (>1 second). Same occurs with the back-
tracking app. In better cases, the perception is changed to almost instant
interaction, like in the case of the mission game. More acceleration gains also
can be achieved by using more specialized instances, e.g. c4.8xlarge. Defini-
tively, there is a limit for code acceleration, which depends on how the code
is written. Thus, to take the acceleration of code further, code parallelization
can be exploited. Code parallelization is not within the scope of this thesis.
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Figure 5.7: Response time of a mission game app.
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Figure 5.8: Response time of a backtracking app.
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Figure 5.9: Load of incoming computational offloading requests.

5.4.2 Scalability

Setup and methodology: The capabilities of a system for handling multi-
tenancy are crucial in an environment that follows a utility computing model.
Previous works in computational offloading have proposed one instance per
mobile architecture [25], which is unrealistic in practice. The goal of this
experiment is to verify the capabilities of our system to handle multiple active
users. As a result, we analyze the effect of handling multiple offloading requests
in different instances types. We also measure the capacity of the front-end to
distribute requests among the surrogates.

Figure 5.9 illustrates the experimental setup, where R1 to Rn requests reach
the front-end in order to be distributed to the back-end based on instance type.
To benchmark all the surrogate types, we used our code offloading simulator
described in section 5.3. The simulator uses the minimax algorithm to create
the load of requests. The input of the algorithm is fixed with the same specific
state of the chessboard that is used to create Figure 5.6.
Results, experiences and lessons learned: The capacity of the front-
end is measured in terms of processing time of the request, which depicts
the time taken by the front-end to decide the surrogate to route the request.
Since the front-end receives and distributes the incoming load of requests, it is
important to know the maximum capacity of the front-end before it turns into
a bottleneck for the system. Usually, the front-end is provided free of charge
by the cloud vendor, e.g. Amazon autoscale. In our experimental setup, we
assume that the front-end is a m3.xlarge instance. Figure 5.10 shows the
number of requests that the front-end can handle when facing a load of 250
requests with an interarrival rate of three seconds. The interarrival rate is
the time between creating one and the next request. From the result, we can
observe that the processing time to distribute requests remain in average ≈150
milliseconds even as the load increases.
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Figure 5.10: Capacity of the front-end to route the requests before turning
into a bottleneck.

On the other hand, unlike the front-end, instances in the back-end face
higher CPU utilization caused by the invocation of code. Computational of-
floading requests suffer from non-deterministic execution of code, which means
that the processing time of the request can vary abruptly based on different
parameters, e.g. input variability in the code. Thus, the requests cannot be
easily characterized. We explored in Chapter 4, the capacity of a Dalvik-x86
to handle concurrent requests (Refer to Figure 4.13). By concurrent requests
we mean that the interarrival rate is almost insignificant, so that the start time
of all the requests is the same. To demonstrate horizontal scaling, we generate
requests based on an interarrival rate of three seconds. We scale out gradu-
ally the servers from 1 to 7, which means that servers are added on demand
dynamically to the back-end. We did not consider more servers as we did not
see major improvements in response time as servers were added. We used as
surrogates m3. 2xlarge instances, because they are the most powerful servers
we can get without requesting explicitly to the cloud provider.

Results of the experiment are show in Figure 5.11. Interestingly, the re-
sponse time of the requests drops up to 15 seconds and remains like that even
when adding more servers. Initially, we thought that the front-end turned
into a bottleneck. However, after a close inspection (Refer to Figure 5.10),
we realized that the processing time of a request increases as a server receives
the requests at different points in time. This means that unlike concurrent
requests, the response time of those requests that reach the system in long
interarrival times are processed slowly by the server. This suggests that to
achieve short response time when handling multiple requests, all the requests
that reach the system must be scheduled by the front-end to be processed at
once. Computational requests that contain code that can be parallelized can
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Figure 5.11: Response time of the requests when scaling horizontally, from 1
to 7 surrogates

benefit from this characteristic, so that a request is parallelized within the
same server instead of splitting it into multiple servers.

5.5 Discussion

The main limitation of our allocation model is to assume that the provisioning
cost of an instance is based on hours. Many other conditions or provisioning
models could be adopted, for instance, charge cost based on the number of
requests, type of the request, etc. In our system, as explained in Chapter 2,
subsection 2.2.3, we included in the allocation model, the most relevant as-
pects which are critical for the provisioning of back-end surrogates for code
offloading. Moreover, we chose this allocation model as it is generic enough to
be deployed in any public or private cloud.

5.6 Summary

The proliferation of smartphone apps is on the rise, in particular stand alone
apps like games. However, many of these apps do not survive for longer peri-
ods in the app stores and the ones that do survive are gradually forgotten by
the user. To counter the problem of loss of interest in an app, we investigated
how to improve the app QoE in order to foster app engagement. We modeled
app usage in terms of session length and abandonment. By detecting when
those metrics decreased, our system accelerates the code execution of the app
to enhance its fidelity. Since the acceleration is constrained by the mobile re-
sources, we used computational offloading to speed up the execution of code.
By dynamically varying the computational capabilities of the surrogate in the
cloud, it is possible to speed up the code at multiple scales. In this thesis,
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we present our experiences about adapting a computational offloading archi-
tecture into as a service pattern and propose a new system for adaptive app
QoE. Moreover, we also introduce the quality-of-service policies to optimize al-
location of computational resources. The results have shown that our system
can change the perception of the user from interaction with delay to instant
interaction. Naturally, this can only be done when the computational task can
take advantage of more and higher processing resources in order to accelerate
its execution. The execution of a task depends mainly on how the code is
written. The restructuring of code is out of the scope of this work. In this
context, our framework can take a task to its maximum limit of acceleration.
However, this does not necessarily guarantee a drastic change in perception.
Finally, we also found that a surrogate is able to provision code offloading in
large scale scenarios.
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Chapter 6

Conclusion

In this chapter, we present the conclusion of the thesis. The findings reported
in the thesis are summarized by returning to the research questions and reca-
pitulating the work that has been done to answer them.

The main research question (RQ) of this work is how to bring the cloud
infrastructure closer to the smartphone user? This question was elaborated
into six partial questions, where each question focuses on a specific mobile
cloud issue, which is investigated in this thesis.

6.1 Research Questions Revisited

Mobile and cloud computing are converging as the promising technologies for
the near future. Smartphones are looking towards cloud-aware techniques that
allow the device to exploit the massive features of the cloud for its own benefit.
Smartphones can benefit from the cloud by following multiple access schemas,
e.g., REST, CORBA, RMI, etc. Our study focuses on the following issues.
RQ1. How to outsource tasks from the mobile using SOA? RQ2.
How to outsource a task that requires long waiting without overload-
ing the communication with constant polling?

In this thesis, we investigated multiple approaches that can be utilized to
enhance smartphone apps with cloud power. Since the design and deployment
of cloud services mostly follow SOA principles, initially, we investigated how
mobile cloud services can be integrated within the mobile applications. Smart-
phone apps may integrate those functionalities from different cloud levels, so
that a mobile task can be outsourced by direct invocation of a service. This
process is defined as task delegation. However, developing those kinds of mobile
cloud applications requires integrating and considering multiple aspects of the
clouds, such as resource-intensive processing, programmatically provisioning
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of resources (Web APIs) and cloud intercommunication. To overcome these is-
sues, we have developed a Mobile Cloud Middleware (MCM) framework, which
addresses the issues of interoperability across multiple clouds, asynchronous
delegation of mobile tasks and dynamic allocation of cloud infrastructure.

Since most of the cloud services require significant time to process the
request, which can cause energy drain for the device; it is logical to have asyn-
chronous invocation of the cloud service. Asynchronicity is added to the MCM
by adapting the push technologies to manage the synchronization of results be-
tween the mobile and cloud. These technologies are provided for each mobile
platform, e.g., GCM, APNS, etc. Since we found that these technologies are
unreliable in practice and constrained to a specific cloud vendor, we developed
and integrated our own notification service, which is created by extending the
capabilities of a XMPP-based IM infrastructure.MCM also fosters the integra-
tion and orchestration of mobile tasks delegated with minimal data transfer.
We defined this process as a multi-cloud operation based on task delegation.
A prototype of MCM is developed and several applications are demonstrated
in different domains. To verify the scalability of MCM, load tests are also
performed on the hybrid cloud resources. The detailed performance analysis
of the middleware framework shows that MCM improves the quality of service
for mobiles and helps in maintaining soft-real time responses for mobile cloud
applications.
RQ3. Can code offloading be utilized in practice? RQ4. What are
the issues that prevent code offloading to yield a positive result?

While task delegation can enrich the mobile applications with sophisticated
functionality, it requires the cloud to be reachable all the time by device. Thus,
network connectivity is mandatory in order to activate the functionality of a
mobile application. This means that the mobile applications are unable to
work in offline mode. Fortunately, other techniques can be utilized to instru-
ment the mobile applications at code level, which allow a mobile application
to work in both, online and offline modes. These techniques are known as
computational offloading strategies and may be also referred with other names
such as cloud offloading and cyber-foraging, among others. Computational
offloading is a key technique in augmenting the computational capabilities
available for mobile applications with elastic cloud resources. It has been
demonstrated that computational offloading can extend battery life of the de-
vice and improve the performance of the mobile applications. Lot of works
have been proposed in this domain as explained in Chapter 2. However, the
sustainability of the technique in practice is an open issue, which has not been
explored in detail by most of the proposals in the field. In this thesis, we
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investigated the issues that prevent the adoption of code offloading, and pro-
posed a framework, namely Evidence-aware Mobile Computational Offloading
(EMCO), which uses a community of devices to capture all the possible con-
text of code execution as evidence. By analyzing the evidence, EMCO aims
to determine the suitable conditions to offload. EMCO models the evidence
in terms of distributions rates for both local and remote cases. By compar-
ing those distributions, EMCO infers the right properties, in which a mobile
app has to offload. EMCO shows to be more effective in comparison with
other computational offloading frameworks explored in the literature. EMCO
reduces the counterproductive effect of computational offloading by provid-
ing more fine-grained properties encapsulated as dimensions, which provides
a wider perspective of the entire system into the decision process. Moreover,
our system exploits the surrogate to provide better computational provisioning
and fosters the utilization of pre-cached functionality to accelerate even further
the response time of code offloading. Since one key factor of the approach is
collecting data, it is important to know how much evidence must be collected
from a particular app. Enough data that captures all the possible execution
cases of an app is gathered when the number of overlapping between the local
and remote distributions approximates to zero. In short, there is no more over-
lapping between rate distributions. Since EMCO uses an incremental analysis
approach, data duplication at any point in time is out of the question. This
is because, once EMCO removes a slice from the distributions that particular
slice is not considered in the offloading process again. Detecting when enough
data is collected is important because means that there is not anymore con-
texts that influence wrong offloading. Naturally, the amount of data varies
among the mobile apps. As a result, apps with longer input variability require
more data than those that implement resource-intensive tasks with a static
input, for instance, the minimax algorithm of a chess app collects more data
than a routine from a backtracking app that loads static 3D models.
RQ5. How to adapt the app to different QoE levels using computa-
tional offloading in order to improve user’s experience? RQ6. Is it
possible to provide computational offloading as a service that scales
based on incoming load of mobile users?

Finally, beyond the basic benefits of computational offloading, such as
shortening response time of the apps and making the battery of the device
last longer, we investigated how computational offloading can be utilized to
enhance the perception that the user has towards the continuous usage of a
mobile application. This perception is modeled as the fidelity of the mobile
application during runtime and it is explained in detail in Chapter 5. Since
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the cloud provides a vast ecosystem of surrogates with different computational
settings, a task that is offloaded to cloud can be accelerated at multiples levels,
which means that the response time of the app can be provided as a service
based on the suitable and individual perception of each mobile user. Our main
motivation behind providing fidelity at multiple acceleration levels is to pro-
vide adaptive QoE, which can be used as mean of engagement strategy that
increases the lifetime of a smartphone app. We envisioned that as part of an
app released in a store, a counterpart computational service in a cloud also
is released by the same party that developed the app to improve the QoE of
the users that utilize the app. To achieve this, we extend our computational
offloading framework presented in Chapter 4 with the ability to provision con-
tinuous computational offloading in multi-tenancy environments. Moreover,
our system supports QoS policies to optimize dynamically the number of sur-
rogates needed to handle a specific load of computational offloading requests
without affecting the QoE of the active apps offloading to cloud. We evaluated
the performance and scalability of the system and the results have shown the
feasibility of our system in practice.

As part of our work, we provide all the described frameworks, use cases
and tools as open source in GitHub.

6.2 Discussion

There are many benefits and drawbacks that emerge from implementing of-
floading and delegation mechanisms within the development of mobile cloud
applications. We highlight key differences in approaches, implementation ef-
fort, usability, and richness of the mobile applications.

• Offloading is preferable than delegation as mobile applications can be
executed in standalone mode if there is not available connectivity to the
cloud. Thus, task delegation is not suitable for contexts, where there is
no presence of network communication.

• Delegation enriches the mobile applications with more sophisticated func-
tionality than offloading. Even though, mobile components at Class-
method level can be offloaded, the limitations of the compiler running
in the mobile virtual machines (VMs) unable the developer to imple-
ment complex routines within the mobile applications. For instance, the
Dalvik virtual machine of Android offers just a set of java functionality.
Consequently, the richness of the language cannot be exploited and li-
braries such as jclouds or typica cannot be executed on mobile platforms.
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• Offloaded mobile components require less execution time than delegated
mobile tasks. Consequently, we can argue that delegated mobile tasks do
not provide suitable interactivity to the mobile users. However, natively
a mobile platform supports and implements for some processes this kind
of behavior. Thus, it is not trivial that a mobile application may need
long waiting times for completing an operation.

• There are multiple tradeoffs between offloading and resource augmen-
tation. Thus, a mobile application is potentiated by cloud based on its
goals (e.g. Energy-saving, responsiveness, etc.). However, we believe that
through characterization of an offloading operation, a mobile application
can be adapted based on the context, such that a specific tradeoff can
be applied at specific context, in order to obtain the maximum benefit
each time the device goes cloud-aware.

• Delegation fosters a model, in which, mobile applications are enriched
with the variety of cloud services provided on the Web, and thus this
allows creating new business opportunities and alliances.

• The effort required to develop a mobile application that follows a del-
egation model is greater than an application that uses offloading. By
default, a mobile architecture for delegation is highly distributed and
multi-functional. Thus, it is complex to maintain.

• Different offloading frameworks provide different granularity regarding
the definition of mobile components. Currently, mobile components can
be offloaded at Class, Class-method and Thread level as discussed in
section 2.2.1. Each of these levels require a specialized back-end running
in the cloud (e.g. Android x86). Moreover, each strategy enriches the
mobile application at different performance rates. Refer to Table 2.1 for
more detailed information.

• Asynchronous delegation suffers from reliability as notification services
do not ensure quality of services for delivering messages. However, notifi-
cation mechanisms are highly integrated with mobile platforms, and thus
the mechanisms are optimized to work using low resource consumption.

• Code offloading may fail in some cases, as the current scope utilized
by most of the proposed work to characterize an offloading operation is
not enough to measure a real benefit for the handset. This can easily
be realized as 1) mobile components share a non-deterministic behavior,
which makes complex the process of evaluating their impact at runtime
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(e.g. input variability), and 2) cloud infrastructure play an important
role in the overall system. Moreover, next generation technologies for
mobiles are computational comparable with some instances running on
the cloud. For example, Samsung Galaxy S3 computational power is
similar to a micro instance running in Amazon. As a result, in this
thesis, we propose new frameworks to counter the issues of offloading
and delegation.

6.2.1 Limitations

Certainly, mobile architectures can be equipped with computational offloading
mechanisms in order to improve the performance of the smartphone apps and
increase battery life of the device. However, besides the problems, which are
addressed in this work, many other issues mitigate the adoption of computa-
tional offloading. In this section, we discuss these issues.

Regarding the utilization of computational offloading to improve the ex-
perience of user, the main limitation is the continuous reachability to cloud
resources. Since network connectivity cannot be ensured all the time, appli-
cations have to be executed in stand alone mode. This is a drawback from a
point of view of user engagement. Once the response time of an application is
accelerated with cloud in order to engage the user, it is expected that this accel-
eration will continue, and even increase further as the user gets more engaged
with the application. Naturally, when network connectivity is not available,
the mobile application is executed using the mobile resources, which degrades
again the user experience. Certainly, fidelity techniques can be implemented
to assign more mobile resources for executing the application smoothly; how-
ever, even by doing this, it may be that it is not possible to achieve the same
acceleration that is achieved by using cloud. Moreover, by completely focusing
on the mobile user, fidelity techniques can make the device waste rather than
save energy.

Another limitation of using computational offloading to improve QoE is
the price model of cloud resources. Currently, a server in the cloud, e.g.,
Amazon, is rented per hour. As a result, a device is forced to offload to
that particular server during that provisioning time. If the mobile application
needs to increase performance, then it has to wait until the server is terminated
(end of the hour), so that it can rent another one with higher computational
capabilities. Definitively, a user does not have to wait until the end of the
hour to rent another server, however, since using a server in the cloud has a
cost, it is not logical to allocate many servers in the cloud to augment the
capabilities of a single device. Ideally, as explored in Chapter 5 many server
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(back-end) should be available in the cloud to augment the processing resources
of all the incoming load of devices. The load of request has to be routed by a
load balancer (front-end), and from the mobile, a request is sent to the load
balancer, which decides the type of acceleration that has to be given to the
request. By using this architecture design, a user should be charged based on
the number of requests, where each request has a cost that depends on the
type of server that was used to process the request. By the time this thesis
was written, Amazon has started exploring with a model in which a request is
charged based on code execution.

Regarding the security issues that arise from implementing computational
offloading within the mobile architectures, the main risk is to suffer code in-
jection attacks. However, for these types of attacks to work, the attacker has
to have complete knowledge about the code of the application, e.g., name of
method, type of parameters, etc. Based on this information, the attacker can
create his/her own object with the same specifications. If this happens, the
attacker can replace the object exchanged in the mobile cloud communication
by its own object that includes the malicious routines. If the attacker succeeds
in this process, the malicious code can be executed in the device without a
notice. While the attack is complex to perform, the risk of the attack exists.
As a result, the communication channel can be encrypted, e.g., SSH, but in
this case, the computational effort to transfer one task from one place to an-
other also increases. Thus, in order to use secure computational offloading, it
is necessary to engage in the discovery of new encryption mechanisms or to
use computational offloading just in low latency networks, e.g., nearby cloudlet
servers.

In the case of the technologies chosen to developed the systems presented
in this thesis, we have to mention that recently, Google has announced that
the Dalvik VM of Android Operating System is replaced by a new runtime
compiler, namely Android runtime (ART) 47. ART is designed to be compatible
with Dex format, which is the bytecode executed by the virtual machine. The
major modification between ART and Dalvik is that ART implements Ahead-
of-Time (AOT) compilation instead of Just-in-Time (JIT). This means that
an application that uses ART is compiled once during the first execution and
every subsequent execution, the static portions of the app will not be compiled
again. The main goal of ART is to reuse the compiled code, in order to increase
performance and decrease the overall power consumption of the device.

Our proposed systems presented in Chapter 4 and Chapter 5 implement
a Dalvik machine deployed on a x86 architecture as surrogate (Dalvil-x86).

47https://source.android.com/devices/tech/dalvik/
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While a device can obtain major benefits from ART, a surrogate is not in-
fluenced by this change, because in the offloading process, a portion of code
sent by a particular mobile is reconstructed by the surrogate using a specific
application state. This means that a code offloading request depends on the
dynamic application state obtained during the execution of the smartphone
app. Since this application state can differ based on the device features, e.g.,
Android version, type of device, etc., it is not possible to pre-cache app func-
tionality based on a single device criteria.

Naturally, it is possible to reuse an application state in the response of
multiple code offloading requests as presented in our contribution in Chapter 4,
but in that case, our EMCO framework implements a generalized strategy to
pre-cached app functionality that is based on analyzing a community of devices.
This feature cannot be achieved by an ART-based surrogate by itself.

6.3 Future Directions

The contributions to MCC outlined in this thesis open up a number of research
avenues including:

1. Energy-aware offloading as a service for IoT (Internet of Things): —
It is well known that the main goal of MCC is to augment the pro-
cessing capabilities and energetic resources of low-power devices, e.g.,
smartphones. To achieve this, applications installed in the devices are
instrumented with offloading mechanisms, e.g., code offloading. How-
ever, despite of this instrumentation, applications are not aware about
the productive or counterproductive effect that can be influenced in the
mobile resources by outsourcing a task. For instance, how much the code
should be accelerated?, how much energy can be saved? etc.

In this thesis, we overcome the problem of determining the context re-
quired to offload a task by analysis in the cloud the runtime history of
code execution from a community of devices. By relying on the mas-
sive computational resources of the cloud to process big data, we aim
to exploit the knowledge of the crowd. However, many other sources of
information collected from a community of devices can provide insight
about how to configure the offloading process, e.g., sensor information,
user’s interaction, etc. To illustrate this, let’s consider the following
cases:

Case 1: a smartphone that calculates and transmits its GPS coordinates
every time the user uses an application. If the frequency of app usage is
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high, then the device will run out of energy quickly, e.g., Tinder. If we
assume that the end service in the cloud stores the data received, the data
can be analyzed to build a prediction model in the cloud that suggests
when the user changes his/her location. In this manner, the cloud service
can be aware about the user’s location and can configure the mobile app
to recalculate and transmit GPS data when drastic changes of user’s
location are detected by the model. By implementing this approach, the
device can save significant amounts of energy as the computational tasks
of calculating and transmitting GPS data are not tied to app usage, but
user’s movement that is monitored by the cloud.

Case 2: a low-power device, e.g., Arduino microcontroller, that monitors
an environment via sensors, e.g., temperature. Since a client that con-
nects to the microcontroller expects to obtain real time information, the
microcontroller senses the environment regularly. Moreover, in order to
provide scalability for multiple users, the environmental information is
sent to the cloud, such that any user can access it from there. Naturally,
this process requires considerable amount of energy of the device. How-
ever, by analyzing the collected data, it is able to equip the cloud service
with the awareness to schedule the sensing process of the microcontroller
based on opportunistic contexts, for instance, sensing data is likely to
be replaced by other sensing data from a nearby device, sensing data
can be predicted based on history data stored in the cloud, etc., in any
situation, the main goal is to schedule from the cloud, the behaviour of
the device, so that the device can be alleviated from unnecessary compu-
tational effort. Undoubtedly, it is expected that the change of behavior
won’t change the quality of service or experience of the user.

2. Context-aware hybrid computational offloading: —Computational
offloading is a promising technique to augment the computational capa-
bilities of mobile devices. By connecting to remote servers, a mobile
application can rely on code offloading to release the device from exe-
cuting portions of code that requires heavy computational processing.
Yet, computational offloading is far away to be adopted as a mechanism
within the mobile architectures, mainly due to drastic changes in com-
munication latency to remote cloud can cause energy draining rather
than energy saving for the device [13, 21]. Moreover, in the presence of
high communication latency, the responsiveness of the mobile applica-
tions is degraded, which suggests that in order to avoid collateral effects,
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the benefits of computational offloading can just be exploited in low la-
tency proximity using rich nearby servers [79], which are also known as
cloudlets.

Fortunately, 5G is arising as a promising solution to overcome the prob-
lem of high latency communication in cellular networks. 5G fosters the
utilization of Device to Device (D2D) communication [80, 81] to release
the network from data traffic, and accelerate the transmission of data
in end-to-end scenarios. By relying on D2D, and extrapolating features
from remote cloud and cloutlets models, we envisioned a context-aware
hybrid architecture for computational offloading. Our hybrid architec-
ture introduces the concepts of network and cloud assistance, which can
be utilized to coordinate the proximal devices in order to create a D2D
infrastructure. Since the computational capabilities of next generation
smarphones are comparable with some servers running in the cloud, we
believe that multiple mobile devices can be merged together via D2D
in order to create dynamic infrastructure in proximity that can be uti-
lized by the devices themselves to share the load of processing heavy
computational tasks.

Network assistance can be provided by cellular towers. The towers
besides routing the communication between end-to-end points can be
equipped with the logic to determine which devices are connected geo-
graphically close. When devices in proximity are detected, the tower can
induce the devices to transmit data via D2D instead of using the cellular
tower. The cellular towers can also be utilized to determine closer infras-
tructure (e.g., base stations), in which the device should be connected to
reduce the communication latency, like in the cloudlet model. Similarly,
cloud assistance can be utilized to group devices in a D2D cluster. Since
devices are offloading to cloud-based servers (e.g., Amazon), the cloud
can be equipped with the logic to determine which devices shared a com-
mon location. Cloud assistance introduces an extra level of complexity
in the system than network assistance, due to a device is forced to send
as part of the offloading process, the information about its location (e.g.,
GPS). However, cloud assistance alleviates completely the cellular net-
work from computational offloading traffic, as all the process is managed
entirely by the cloud [80].

Additionally, our hybrid framework introduces an infrastructural profiler
running in the mobile that enables the device to determine the computa-
tional capacity of the available D2D infrastructure, which is in proximity.
Our hybrid system enriches the offloading process by introducing more
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alternatives to offload, for instance, a mobile application can decide to
offload to cloud or split the task among multiple nearby devices. An-
other possibility is that a mobile application can offload a task to cloud,
store the result of that offloading request in mobile storage, and then
propagate that result to other devices. Thus, avoiding other devices to
offload to cloud.

Finally, a mobile application offloads to a cloud motivated by saving en-
ergy or improving the performance. In contrast, a mobile offloads to
nearby devices motivated by the idea to have low latency infrastructure
in proximity, similar to cloudlets, in which, the performance of a mo-
bile application can be augmented without affecting the perception and
interaction of the mobile user. Moreover, by offloading in proximity,
the network is released from computational offloading traffic. We envi-
sioned a computational offloading system in which a mobile application
can offload code based on its context, where context is determined by
evaluating the impact of code execution in a remote infrastructure and
a D2D infrastructure in proximity.

3. The effect of computational offloading in large scale provision-
ing scenarios: — While the technique has been prove to be feasible
with latest mobile technologies [21], still there are a lot of open issues
regarding cloud deployment and provisioning in real scenarios. Previ-
ous works proposed a one server per each smartphone architecture [25],
which is unrealistic in practice if we consider the amount of smartphones
nowadays and the provisioning cost of constantly running a server for a
particular user.

Besides a few works that focus on scaling up (vertical scaling) a server
to parallelize the code of computational requests [37], we have not found
architectures that can scale in an horizontal fashion. This clearly can
be seen as current frameworks do not take into consideration the utility
computing features of the cloud, which is translated into server selection
based on provisioning cost. Moreover, unlike a traditional architecture
for code offloading that consists of a client and server, our system also
includes a load balancer similar to Amazon autoscale, which differs from
our balacing mechanism based on push notifications that is presented in
Chapter 4.

We are interested on analysis whether it is possible to support large scale
provisioning for computational offloading? As a result, we want to study
the capacity that cloud servers have to process multiple requests at once
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while maintaining requirements in code acceleration, which influences
directly the response of a smartphone app. Moreover, we also want to
analyze the effect of code acceleration in different cloud servers in order to
foster surrogate selection based on utility computing, which can highlight
new directions for the design of future mobile architectures supported by
cloud computing, e.g., GPU offloading.

4. Tuning the fidelity of smartphone apps with mobile crowdsourc-
ing: — In this thesis, by offloading to cloud, we present a solution to
accelerate the response time of the mobile apps. The ultimate goal of the
approach is to enhance the QoE of the mobile apps in terms of fidelity.
By improving the QoE, we aim to engage the user in order to increase
application usage.

While our solution focuses on accelerating the execution of resource-
intensive tasks, which are candidates to offload, it has been demonstrated
that there are portions of code that cannot be offloaded [18]. An appli-
cation that contains code that cannot be outsourced, it can also tune its
fidelity by analyzing locally the tradeoff between resource consumption
and quality of the response time [82].

Changing fidelity of mobile apps has been prove to be feasible by collect-
ing data locally in the device [26]. However, this process is slow, because
history data is required, and sensitive to changes, because the device is
constantly upgrading and installing new apps. Thus, in order to over-
come these problems, we envisioned fidelity tuning via data analytics
from a community of devices.

Our idea is that apps are instrumented with mechanisms that capture
their local execution at high level, e.g., method name, etc. This data is
uploaded to the cloud for analysis. Based on the analysis, the cloud can
perform individual diagnosis to each device and suggest optimal fidelity
execution of each app installed in the device.
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Chapter 7

Teenustele orienteeritud ja
tõendite-teadlik mobiilne
pilvearvutus

Arvutiteaduses on kaks kõige suuremat jõudu: mobiili- ja pilvearvutus. Tä-
napäeval kasutatakse mobiili- ja pilvetehnoloogiat igapäevaste tegevuste jaoks
nagu suhtlemine, videote vaatamine, mängimine jne. Kui pilvetehnoloogia
pakub kasutajale keerukate ülesannete lahendamiseks salvestus- ning arvutus-
platvormi, siis nutitelefon võimaldab lihtsamate ülesannete lahendamist mis-
tahes asukohas ja mistahes ajal. Seega on mõistlik liidestada pilvetehnoloogia
mobiiliga, et saavutada arvutisarnane funktsionaalsus liikvel olles. Nende kahe
ala koondumisega on esile kerkinud mobiilne pilvearvutus (Mobile Cloud Com-
puting, MCC).

Täpsemalt on mobiilseadmetel võimalik pilve võimalusi ära kasutades ener-
giat säästa ning jagu saada kasvavast jõudluse ja ruumi vajadusest. Sellest tu-
lenevalt on käesoleva töö peamiseks küsimuseks kuidas tuua pilveinfrastruktuur
mobiilikasutajale lähemale? Kuna mobiili- ja pilve ressursside ühendamiseks
leidub erinevaid arhitektuurseid lahendusi, siis antud küsimusele vastuse leid-
miseks vaatlesimegi mitmeid võimalusi. Mobiilseade võib töö delegeerida pil-
vele, et vabastada enda arvutuslikke ressursse. Töö tellitakse teenusetasemel
(töö delegeerimine) ja teisaldatakse kooditasemel (arvutuslik teisaldamine).
Töö tellimine eeldab, et pilv on seadmele kättesaadav kogu aeg. Seetõttu
on võrguühendus mobiilirakenduse funktsionaalsuse aktiveerimiseks vajalik.
Seevastu töö teisaldamine võimaldab mobiilirakendusel oma funktsionaalsust
aktiveerida võrguühenduse olemasolust sõ ltumata.

Olemasolevad lahendused on näidanud, et töö edastamine pilvele rikastab
mobiilirakendust keerukama funktsionaalsusega, kuid see ei taga energiasäästu
ega paremat jõudlust rakendusele. Kuna pilveteenuste disain ja juurutamine

138



jälgib peamiselt SOA põhimõtteid, siis algselt uurisime me käesolevas väitekir-
jas, kuidas mobiili pilveteenuseid integreerida mobiilirakendustes. Saime teada,
et töö delegeerimine pilve eeldab mitmete pilve aspektide kaalumist ja in-
tegreerimist, nagu näiteks ressursimahukas töötlemine, asünkroonne suhtlus
kliendiga, programmaatiline ressursside varustamine (Web APIs) ja pilvede-
vaheline kommunikatsioo. Nende puuduste ületamiseks lõime me Mobiilse
pilve vahevara Mobile Cloud Middleware (Mobile Cloud Middleware - MCM)
raamistiku, mis kasutab deklaratiivset teenuste komponeerimist, et delegeerida
töid mobiililt mitmetele pilvedele kasutades minimaalset andmeedastust.

Teisest küljest on näidatud, et koodi teisaldamine on peamisi strateegiaid
seadme energiatarbimise vähendamiseks ning jõudluse suurendamiseks. Sel-
legipoolest on koodi teisaldamisel miinuseid, mis takistavad selle laialdast
kasutuselevõttu. Koodi teisaldamine on kasulik, kui suudetakse säästa en-
ergiat, muutmata seejuures rakenduse reaktsiooniaega ning vastupidi kahju-
lik, kui kulutatakse töö teisaldamiseks rohkem energiat võrreldes töö lokaalse
jooksutamisega. Selles töös uurime lisaks, mis takistab koodi mahalaadimise
kasutuselevõttu ja pakume lahendusena välja raamistiku EMCO, mis kogub
seadmetelt infot koodi jooksutamise kohta erinevates kontekstides. Neid and-
meid analüüsides teeb EMCO kindlaks, mis on sobivad tingimused koodi maha
laadimiseks. Võrreldes kogutud andmeid, suudab EMCO järeldada, millal
tuleks mahalaadimine teostada. EMCO modelleerib kogutud andmeid jaotuse
määra järgi lokaalsete- ning pilvejuhtude korral. Neid jaotusi võrreldes tuletab
EMCO täpsed atribuudid, mille korral mobiilirakendus peaks koodi maha
laadima. Võrreldes EMCO-t teiste nüüdisaegsete mahalaadimisraamistikega,
tõuseb EMCO efektiivsuse poolest esile.

Lõpuks, lisaks peamistele koodi maha laadimise eelistele, uurisime kuidas
arvutuste maha laadimist ära kasutada, et täiustada kasutaja kogemust pideval
mobiilirakenduse kasutamisel. Seda kogemust suhestatakse ajaga, mis kulub
ülesande arvutuslikuks tööks ja kasutajale tulemuste näitamiseks. Kuna pilve
arhitektuur võimaldab seadistada ülesannete täitmist mitmel moel, siis on või-
malik pilve laetud ülesannet kiirendada mitmel tasemel. See tähendab, et rak-
enduse reaktsiooniaja saab ette näha igale mobiiltelefoni kasutajale vastavalt
neile sobivale ja individuaalsele tajule. Meie peamiseks motivatsiooniks, et sel-
list adaptiivset tööde täitmise kiirendamist pakkuda, on tagada kasutuskvali-
teet (QoE), mis muutub vastavalt kasutajale, aidates seeläbi suurendada mo-
biilirakenduse eluiga. Meie nägemuse kohaselt on ühe osana rakenduste poes
avaldatud rakendusest pilvel asuv arvutuslik teenus, mis parandab jooksvalt
rakenduse tarbijate kasutuskvaliteeti.
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Chapter 8

Appendix

8.1 Appendix A: Sensor Classification Algorithm
using MapReduce

The integration of micromechanical sensor technologies within the smartphones
makes it possible to enrich the usability experience of interacting with a mo-
bile application by sensing the user’s context and to understand certain human
activities based on the tracking of the user’s intention. Several prototypes and
signal processing algorithms have been developed for human motion classifica-
tion and recognition allowing reliable (more than 90% accurate) detection of
basic movements [83].

The accelerometer simultaneously outputting tilt, is the most common sen-
sor that is included within a modern mobile device as it allows tracking infor-
mation that can be used for infering multiple human movements. Depending
on the number of axes, it can gather the acceleration information from mul-
tiple directions. Generally a triaxial accelerometer is the most common in
mobiles from vendors such as HTC, Samsung, Nokia etc. Therefore, accelera-
tion can be sensed on three axes, forward/backward, left/right and up/down.
For example: in the case of a runner, up/down is measured as the crouching
when he/she is warming up before starting to run, forward/backward is related
with speeding up and slowing down, and left/right involves making turns while
he/she is running.

Similarly, the gyroscope sensor is an actuator based on the principles of
angular momentum conservation that is used for establishing position, navi-
gation and orientation of the device, among others. It consists of three axes
or freedom degrees (spinning, perpendicular and tilting) mounted in a rotor
which are composed by two concentrically pivoted rings (inner and outer). The
gyroscope is used within the mobile for enhancing techniques such as gesture
recognition and face detection. Furthermore, the combination of accelerometer
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Algorithm 3 Sensor Processing with MapReduce

• Map
Require: CSV file

– map function parameter is a <key, value >pair, where:

∗ key - line number
∗ value - line content

– value is split into several variables (gyroscope’s and accelerome-
ter’s values, timestamp, url)

– gyroscope’s values are examined, they have to be smaller than
0.05 (which means minimal rotation)

– accelerometer’s values are compared to the fixed threshold (to
indicate that the user is holding the phone in his hand)

– if the sensors’ values are in range, the map will emit a <key,
value >pair, where:

∗ key - timestamp in seconds
∗ value - url

• Reduce
Require: timestamp, list <url >

– timestamp consists of the relative time in which the measurement
was taken

– count the elements in the list and emit a <key,value >pair,
where:

∗ key - time range
∗ value - url

– sort the list in descending order.
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8.1 Appendix A: Sensor Classification Algorithm using MapReduce

and gyroscope sensor data allows to increase the motion accuracy, and thus
approaches such as video stabilization are implemented on the mobile.

We collected and synchronized in this thesis, the measurements of the gy-
roscope and accelerometer along with the URL of the mobile web browser in
order to identify repetitive patterns that can be classified as a specific human
activity (e.g. walking, reading, etc.). Algorithm 3 shows the parallelizable
process of sensor analysis. We used MapReduce as the sensor information can
be collected daily from the mobile and uploaded to the cloud, thus, creating a
big repository of analyzable data that requires resource-intensive processing.
Basically, the algorithm aims to classify all the sensor readings into an interval
threshold, which is defined prior the experiments in a training phase. This
interval was determined by identifying what are the actual sensors readings
of the accelerometer and gyroscope when the device is hold by the user in a
reading position. Naturally, the meaning of a reading position can vary. As
a result, in this work, we define a reading position as all the space in front of
the user in a radius of ≈ 50 cm from his/her eyes as starting.

142



References

[1] Mahadev Satyanarayanan, James J Kistler, Lily B Mummert,

Maria R Ebling, Puneet Kumar, and Qi Lu. Experience with discon-
nected operation in a mobile computing environment. Springer, 1996. 15

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Kon-

winski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, et al. Above
the clouds: a berkeley view of cloud computing. EECS Department,
University of California, Berkeley, technical report., 2009. 15

[3] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and

Nigel Davies. The case for vm-based cloudlets in mobile comput-
ing. IEEE Pervasive Computing Magazine, 8(4):14–23, 2009. 16, 17, 33, 45,
49

[4] U. Hansmann, R.M. Mettala, A. Purakayastha, and P. Thompson.
SyncML: synchronizing and managing your mobile data. Prentice Hall, 2003.
16

[5] Dushyanth Narayanan, Jason Flinn, and Mahadev Satyanarayanan.
Using history to improve mobile application adaptation. In Proceedings
of 3rd IEEE workshop on mobile computing systems and applications, pages
31–40. IEEE, 2000. 16, 19, 21, 44, 45, 48, 107

[6] H. Flores, S. N. Srirama, and C. Paniagua. A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles. In Proceedings of the 9th international conference on advances in
mobile computing & multimedia (MoMM), pages 87–95. ACM, 2011. 16, 24, 28,
53, 80

[7] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile
cloud computing: a survey. Future generation computer systems, 29(1):84–
106, 2013. 16, 17, 19, 38, 40

[8] Huber Flores, Satish Narayana Srirama, and Rajkumar Buyya.
Computational offloading or data binding? bridging the cloud infras-
tructure to the proximity of the mobile user. In Proceedings of IEEE 2nd
international conference on mobile cloud computing, services, and engineering
(MobileCloud), pages 10–18. IEEE, 2014. 16, 17

143



References

[9] Qian Wang and Ralph Deters. SOA‘s last mile connecting smart-
phones to the service cloud. In IEEE international conference on cloud
computing (CLOUD), pages 80–87, 2009. 16, 29

[10] Huber Flores and Satish Narayana Srirama. Mobile cloud middle-
ware. Journal of systems and software, 92:82–94, 2014. 16, 17, 20, 43, 52,
100

[11] Rajesh Balan, Jason Flinn, Mahadev Satyanarayanan, Shafeeq Sin-

namohideen, and Hen-I Yang. The case for cyber foraging. In Proceed-
ings of the 10th workshop on ACM SIGOPS European workshop, pages 87–92.
ACM, 2002. 17

[12] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
Cloudlets: bringing the cloud to the mobile user. In Proceedings of the
third Mobisys workshop on mobile cloud computing and services (MCS), pages
29–36. ACM, 2012. 17, 34

[13] Marco V Barbera, Sokol Kosta, Alessandro Mei, Vasile C Perta,

and Julinda Stefa. Mobile offloading in the wild: findings and lessons
learned through a real-life experiment with a new cloud-aware system.
Proceedings of IEEE INFOCOM. 17, 18, 40, 82, 83, 99, 134

[14] Huber Flores and Satish Srirama. Mobile code offloading: should
it be a local decision or global inference? In Proceeding of the 11th
annual international conference on mobile systems, applications, and services
(MobiSys), pages 539–540. ACM. 17, 18, 21, 36, 41, 50, 83

[15] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama, and

Rajkumar Buyya. Mobile code offloading: from concept to practice
and beyond. IEEE Communications Magazine, 53(3):80–88, 2015. 17, 21, 33,
48, 82, 108, 118

[16] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and

Dejan Milojicic. Adaptive offloading for pervasive computing. IEEE
pervasive computing magazine, 3(3):66–73, 2004. 17

[17] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-

man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI:
making smartphones last longer with code offload. In Proceedings of
the 8th international conference on mobile systems, applications, and services
(Mobisys), pages 49–62. ACM, 2010. 17, 18, 35, 37, 38, 49, 50

[18] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and

Ashwin Patti. Clonecloud: elastic execution between mobile device
and cloud. In Proceedings of the 6th conference on computer systems (EuroSys),
pages 301–314, 2011. 17, 18, 35, 38, 39, 49, 50, 86, 137

144



References

[19] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xin-

wen Zhang. Thinkair: dynamic resource allocation and parallel exe-
cution in the cloud for mobile code offloading. In Proceedings of IEEE
INFOCOM, pages 945–953. IEEE, 2012. 17, 18, 38, 39, 43, 50

[20] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley

Mao, and Xu Chen. COMET: code offload by migrating execution
transparently. In Proceedings of the 10th USENIX conference on operating
systems design and implementation, pages 93–106. USENIX, 2012. 17, 18, 38,
39, 50

[21] Huber Flores and Satish Srirama. Adaptive code offloading for
mobile cloud applications: exploiting fuzzy sets and evidence-based
learning. In Proceeding of the 4th ACM MobiSys workshop on mobile cloud
computing and services, pages 9–16, 2013. 17, 38, 40, 90, 115, 134, 136

[22] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008. 18

[23] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham

Murthy. Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009. 18

[24] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau.
SPARK: a high-level synthesis framework for applying parallelizing
compiler transformations. In Proceedings of international conference on
VLSI Design, pages 461–466. IEEE, 2003. 18

[25] Paramvir Bahl, Richard Y Han, Li Erran Li, and Mahadev Satya-

narayanan. Advancing the state of mobile cloud computing. In Pro-
ceedings of the 3rd Mobisys workshop on mobile cloud computing and services
(MCS), pages 21–28. ACM, 2012. 18, 40, 49, 82, 122, 136

[26] Mahadev Satyanarayanan and Dushyanth Narayanan. Multi-fidelity
algorithms for interactive mobile applications. Wireless Networks,
7(6):601–607, 2001. 19, 48, 111, 137

[27] Mary Shaw and David Garlan. Software architecture: perspectives on an
emerging discipline, 1. Prentice Hall Englewood Cliffs, 1996. 19

[28] Jan Bosch. Software architecture: The next step. In Software architec-
ture, pages 194–199. Springer, 2004. 19

[29] Daniel A Menasce, Virgilio AF Almeida, Lawrence W Dowdy, and

Larry Dowdy. Performance by design: computer capacity planning by exam-
ple. Prentice Hall Professional, 2004. 19, 32, 45, 113

145



References

[30] Henry H Liu. Software performance and scalability: a quantitative approach,
7. John Wiley & Sons, 2011. 19, 113

[31] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011. 19

[32] Andreas Klein, Christian Mannweiler, Joerg Schneider, and

Hans D Schotten. Access schemes for mobile cloud computing. In Pro-
ceedings of 11th international conference on mobile data management (MDM),
pages 387–392. IEEE, 2010. 20

[33] Huber Flores and Satish Narayana Srirama. Mobile cloud messaging
supported by XMPP primitives. In Proceedings of the 4th Mobisys workshop
on mobile cloud computing and services (MCS). ACM, 2013. 20, 53, 55, 74, 81,
94, 105

[34] Verdi March, Yan Gu, Erwin Leonardi, George Goh, Markus Kirch-

berg, and Bu Sung Lee. µcloud: towards a new paradigm of rich
mobile applications. Procedia Computer Science, 5:618–624, 2011. 29

[35] R. Aversa, B. Di Martino, M. Rak, and S. Venticinque. Cloud
agency: a mobile agent based cloud system. In Proceedings of interna-
tional conference on complex, intelligent and software intensive systems, pages
132–137. Ieee, 2010. 29

[36] K. Kumar and Y.H. Lu. Cloud computing for mobile users: can of-
floading computation save energy? Computer, 43(4):51–56, 2010. 35, 36,
74, 82, 87

[37] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,

David Wetherall, and Ramesh Govindan. Odessa: enabling inter-
active perception applications on mobile devices. In Proceedings of the
9th international conference on mobile systems, applications, and services (Mo-
bisys), pages 43–56. ACM, 2011. 38, 39, 49, 136

[38] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar,

Mayur Naik, and Ellen Zegura. COSMOS: computation offloading
as a service for mobile devices. Proceedings of MobiHoc, 2014. 38, 40, 43,
83, 99

[39] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K Nurminen, Matti

Kemppainen, and Pan Hui. SmartDiet: offloading popular apps to
save energy. In Proceedings of the ACM SIGCOMM 2012 conference on appli-
cations, technologies, architectures, and protocols for computer communication,
pages 297–298. ACM, 2012. 40

146



References

[40] Guangyu Chen, B-T Kang, Mahmut Kandemir, Narayanan Vijaykr-

ishnan, Mary Jane Irwin, and Rajarathnam Chandramouli. Study-
ing energy trade offs in offloading computation/compilation in java-
enabled mobile devices. IEEE transactions on parallel and distributed sys-
tems, 15(9):795–809, 2004. 41

[41] Antti P Miettinen and Jukka K Nurminen. Energy efficiency of mo-
bile clients in cloud computing. In Proceedings of the 2nd USENIX confer-
ence on Hot topics in cloud computing, pages 4–4. USENIX Association, 2010.
41

[42] Mark Weiser. Ubiquitous computing. Computer, (10):71–72, 1993. 44

[43] Kuan-Ta Chen, Cheng-Chun Tu, and Wei-Cheng Xiao. OneClick: a
framework for measuring network quality of experience. In Proceedings
of IEEE INFOCOM, pages 702–710. IEEE, 2009. 45

[44] Peter Brooks and Bjørn Hestnes. User measures of quality of ex-
perience: why being objective and quantitative is important. IEEE
network magazine, 24(2):8–13, 2010. 45

[45] Xuan Bao, Songchun Fan, Alexander Varshavsky, Kevin Li, and

Romit Roy Choudhury. Your reactions suggest you liked the movie:
automatic content rating via reaction sensing. In Proceedings of the ACM
international joint conference on pervasive and ubiquitous computing, pages 197–
206. ACM, 2013. 45

[46] J. Froehlich, M.Y. Chen, S. Consolvo, B. Harrison, and J.A. Lan-

day. MyExperience: a system for in situ tracing and capturing of
user feedback on mobile phones. In Proceedings of the 5th international
conference on mobile systems, applications and services (Mobisys), pages 57–70.
ACM, 2007. 45

[47] Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha

Venkataraman, and He Yan. Prometheus: toward quality-of-
experience estimation for mobile apps from passive network measure-
ments. In Proceedings of the 15th workshop on mobile computing systems and
applications (HotMobile), page 18. ACM, 2014. 45, 46, 108

[48] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey

Pang, Srinivasan Seshan, Shobha Venkataraman, and He Yan. Mod-
eling web quality-of-experience on cellular networks. In Proceedings of
the 20th annual international conference on mobile computing and networking,
pages 213–224. ACM, 2014. 45, 46, 47, 108

[49] Robert Hsieh and Aruna Seneviratne. A comparison of mechanisms
for improving mobile IP handoff latency for end-to-end TCP. In Pro-

147



References

ceedings of the 9th annual international conference on mobile computing and
networking, pages 29–41. ACM, 2003. 46

[50] Leo A Meyerovich and Rastislav Bodik. Fast and parallel webpage
layout. In Proceedings of the 19th international conference on world wide web
(WWW), pages 711–720. ACM, 2010. 46

[51] Venkata N Padmanabhan and Jeffrey C Mogul. Improving HTTP
latency. Computer networks and ISDN systems, 28(1):25–35, 1995. 46

[52] Hari Balakrishnan, Venkata N Padmanabhan, Srinivasan Seshan,

and Randy H Katz. A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM transactions on networking,
5(6):756–769, 1997. 46

[53] Mojca Volk, Janez Sterle, Urban Sedlar, and Andrej Kos. An ap-
proach to modeling and control of QoE in next generation networks
[Next Generation Telco IT Architectures]. IEEE Communications Mag-
azine, 48(8):126–135, 2010. 46

[54] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung

Lei. Quantifying Skype user satisfaction. In ACM SIGCOMM computer
communication review, 36, pages 399–410. ACM, 2006. 47

[55] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Se-

shan, Ion Stoica, and Hui Zhang. Developing a predictive model
of quality of experience for internet video. In Proceedings of the ACM
SIGCOMM, pages 339–350. ACM, 2013. 47, 107

[56] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia

Szabo, Scott Bourne, and Xiaofei Xu. Web services composition: a
decade‘s overview. Information Sciences, 280:218–238, 2014. 52

[57] Liangzhao Zeng, Boualem Benatallah, Anne HH Ngu, Marlon Du-

mas, Jayant Kalagnanam, and Henry Chang. QoS-aware middleware
for web services composition. IEEE Transactions on software engineering,,
30(5):311–327, 2004. 52

[58] A. Onetti and F. Capobianco. Open source and business model in-
novation. The Funambol case. In Proceedings of International Conference
on operating systems, pages 224–227, 2005. 52

[59] Jason H Christensen. Using RESTful web-services and cloud com-
puting to create next generation mobile applications. In Proceedings of
the 24th ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications, pages 627–634. ACM, 2009. 52

148



References

[60] H. Flores, S. Srirama, and C. Paniagua. Towards mobile cloud appli-
cations: offloading resource-intensive tasks to hybrid clouds. Interna-
tional journal of pervasive computing and communications, 8(4):344–367, 2012.
57, 76, 80

[61] S.N. Srirama, C. Paniagua, and H. Flores. Social group formation
with mobile cloud services. Service Oriented Computing and Applications,
6(4):1–12, 2012. 57

[62] Satish Narayana Srirama, Huber Flores, and Carlos Paniagua.
Zompopo: mobile calendar prediction based on human activities
recognition using the accelerometer and cloud services. In Proceedings
of 5th international conference on next generation mobile applications, services
and technologies (NGMAST), pages 63–69. IEEE CS, 2011. 57

[63] Satish Narayana Srirama, Carlos Paniagua, and Huber Flores.
CroudSTag: social group formation with facial recognition and mobile
cloud services. Procedia computer science, 5:633–640, 2011. 57

[64] Carlos Paniagua, Satish Narayana Srirama, and Huber Flores.
Bakabs: managing load of cloud-based web applications from mobiles.
In Proceedings of the 13th international conference on information integration
and web-based applications and services (iiWas), pages 485–490. ACM, 2011. 57

[65] Peter Saint-André, Kevin Smith, and Remko Troncon. XMPP: the
definitive guide : building real-time applications with Jabber. O’Reilly Media,
2009. 60

[66] Carlos Paniagua, Huber Flores, and Satish Narayana Srirama. Mo-
bile sensor data classification for human activity recognition using
MapReduce on cloud. Procedia computer science, 10:585–592, 2012. 71

[67] Wenzhong Li, Yanchao Zhao, Sanglu Lu, and Daoxu Chen. Mecha-
nisms and challenges on mobility-augmented service provisioning for
mobile cloud computing. IEEE Communications Magazine, 53(3):89–97,
2015. 82

[68] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K Nurminen, Matti

Kemppainen, and Pan Hui. Can offloading save energy for popular
apps? In Proceedings of the 17th ACM international workshop on mobility in
the evolving internet architecture, pages 3–10. ACM, 2012. 82

[69] Eemil Lagerspetz and Sasu Tarkoma. Mobile search and the cloud:
the benefits of offloading. In Proceedings of IEEE international conference
on pervasive computing and communications workshops (PERCOM Workshops),
pages 117–122. IEEE, 2011. 82

149



References

[70] Byung-Gon Chun and Petros Maniatis. Dynamically partitioning
applications between weak devices and clouds. In Proceedings of the 1st
ACM Workshop on Mobile Cloud Computing & Services: Social Networks and
Beyond, page 7. ACM, 2010. 82

[71] Adam J Oliner, Anand P Iyer, Ion Stoica, Eemil Lagerspetz, and

Sasu Tarkoma. Carat: collaborative energy diagnosis for mobile de-
vices. In Proceedings of the 11th ACM conference on embedded networked sensor
systems (Sensys), page 10. ACM, 2013. 83, 88, 96

[72] Liyao Xiang, Shiwen Ye, Yuan Feng, Baochun Li, and Bo Li. Ready,
set, go: coalesced offloading from mobile devices to the cloud. Pro-
ceedings of IEEE INFOCOM. 85

[73] Mark Gordon, Lide Zhang, Birjodh Tiwana, R Dick, ZM Mao, and

L Yang. Power tutor, a power monitor for Android-based mobile
platforms, 2009. 88

[74] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia. A generic
quantitative relationship between quality of experience and quality of
service. IEEE network magazine, 24(2):36–41, 2010. 107, 108

[75] Muhammad Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang,

and Jia Wang. Characterizing geospatial dynamics of application us-
age in a 3G cellular data network. In Proceedings of IEEE INFOCOM,
pages 1341–1349. IEEE, 2012. 108

[76] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio

Krüger, and Gernot Bauer. Falling asleep with Angry Birds, Face-
book and Kindle: a large scale study on mobile application usage. In
Proceedings of the 13th international conference on human computer interaction
with mobile devices and services, pages 47–56. ACM, 2011. 111

[77] Hamdy A Taha. Operations research: an introduction, 557. Pearson/Prentice
Hall, 2007. 111

[78] Yagiz Onat Yazir, Chris Matthews, Roozbeh Farahbod, Stephen

Neville, Adel Guitouni, Sudhakar Ganti, and Yvonne Coady. Dy-
namic resource allocation in computing clouds using distributed mul-
tiple criteria decision analysis. In IEEE 3rd international conference on
cloud computing (CLOUD), pages 91–98. Ieee, 2010. 113

[79] Zhang Yang, Dusit Niyato, and Ping Wang. Offloading in mobile
cloudlet systems with intermittent connectivity. 135

[80] Jakob Mass, Satish Narayana Srirama, Huber Flores, and Chii

Chang. Proximal and social-aware device-to-device communication

150



References

via audio detection on cloud. In Proceedings of the 13th International con-
ference on mobile and ubiquitous multimedia (MUM), pages 143–150. ACM,
2014. 135

[81] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Ze-

gura. Serendipity: enabling remote computing among intermittently
connected mobile devices. In Proceedings of the thirteenth ACM interna-
tional symposium on mobile ad hoc networking and computing, pages 145–154.
ACM, 2012. 135

[82] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun

Yang, B-g Chun, Ling Huang, Petros Maniatis, Mayur Naik, and

Yunheung Paek. Mantis: efficient predictions of execution time, en-
ergy usage, memory usage and network usage on smart mobile de-
vices. 137

[83] S.J. Preece, J.Y. Goulermas, L.P.J. Kenney, D. Howard, K. Meijer,

and R. Crompton. Activity identification using body-mounted sen-
sorsŮa review of classification techniques. Physiological measurement,
30(4):R1, 2009. 140

151


	List of Figures
	List of Tables
	Acronyms
	I Overview
	1 Introduction
	1.1 Problem Statement
	1.2 Methodology
	1.3 Contributions
	1.4 Outline

	2 A Review of Mobile Cloud Computing
	2.1 Service-oriented Mobile Cloud
	2.1.1 Delegation of Mobile Tasks to Cloud
	2.1.2 Cloud Service Integration for Mobile Applications
	2.1.3 Challenges and Technical Problems

	2.2 Mobile Cloud Offloading
	2.2.1 Mobile Code Offloading
	2.2.2 Computational Offloading in the Literature
	2.2.3 Challenges and Technical Problems

	2.3 Achieving App QoE through Computational Offloading
	2.3.1 App QoE
	2.3.1.1 Network Tuning
	2.3.1.2 Resource Allocation

	2.3.2 Challenges and Technical Problems

	2.4 Summary


	II Contributions
	3 Mobile Cloud Middleware
	3.1 Design Goals and Architecture
	3.1.1 Asynchronous Support for Resource-intensive Tasks
	3.1.2 Generic Support for Asynchronous Delegation based on XMPP
	3.1.2.1 Fundamentals and Extensions
	3.1.2.2 Implementation Details of the Messaging Framework

	3.1.3 Asynchronous Delegation Performance
	3.1.4 Evaluation and Analysis

	3.2 Hybrid Cloud Service Composition of MCM
	3.2.1 Hybrid Cloud Service Implementation
	3.2.2 Hybrid Mobile Cloud Application - Demo Scenario
	3.2.3 Hybrid Cloud Service Composition Analysis

	3.3 Scalability of MCM
	3.3.1 Scalability Analysis of the MCM

	3.4 Summary

	4 Evidence-aware Mobile Computational Offloading
	4.1 Design Goals and Architecture
	4.1.1 Development Toolkit
	4.1.2 Smartphone-side
	4.1.3 Cloud-side

	4.2 Evaluation and Validation
	4.2.1 Mobile Performance and Energy Saving
	4.2.2 Scalability of the Framework

	4.3 Summary

	5 Adaptive App Quality-of-Experience as a Service
	5.1 Adapting App QoE: Design goals and Architecture
	5.1.1 System Overview

	5.2 Dynamic Computational Provisioning
	5.3 Implementation of the System
	5.3.1 Back-end
	5.3.2 Front-end
	5.3.3 QoE Client

	5.4 Evaluation and Analysis
	5.4.1 Performance
	5.4.2 Scalability

	5.5 Discussion
	5.6 Summary

	6 Conclusion
	6.1 Research Questions Revisited
	6.2 Discussion
	6.2.1 Limitations

	6.3 Future Directions

	7 Teenustele orienteeritud ja tõendite-teadlik mobiilne pilvearvutus
	8 Appendix
	8.1 Appendix A: Sensor Classification Algorithm using MapReduce

	References


